
For Use with MATLAB®

User’s Guide
Version 1

Distributed Computing
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Distributed Computing Toolbox User’s Guide
© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2004 Online only New for Version 1.0 (Release 14SP1+)
March 2005 Online only Revised for Version 1.0.1 (Release 14SP2)

Contents
1
Getting Started

What Are the Distributed Computing Products? 1-2

Toolbox and Engine Components . 1-5
Job Managers, Workers, and Clients . 1-5
Components on Mixed Platforms . 1-6
The MATLAB Distributed Computing Engine Daemon 1-6
Components Represented in the Client 1-7

Using the Distributed Computing Toolbox 1-8
Overview . 1-8
Example: Programming a Basic Job . 1-8
Example: Evaluating a Basic Function 1-9

Getting Help . 1-10
Command-Line Help . 1-10
Help Browser . 1-11

2
Network Administration

Preparing for Distributed Computing 2-2
Before You Start . 2-2
Planning Your Network Layout . 2-2
Network Requirements . 2-3
i

ii Contents
UNIX and Macintosh System Administration 2-4
Before You Start . 2-4
Configuring the MDCE Daemon . 2-4
Starting Job Managers . 2-5
Starting Workers . 2-6
Stopping Job Managers and Workers . 2-7
Stopping and Uninstalling the MDCE Daemon 2-8

Windows System Administration . 2-9
Before You Start . 2-9
Configuring the MDCE Service . 2-9
Starting Job Managers . 2-11
Starting Workers . 2-11
Stopping Job Managers and Workers . 2-12
Stopping and Uninstalling the MDCE Service 2-13

Customizing Engine Services . 2-14
Overriding the Script Defaults . 2-14
Defining the Script Defaults . 2-15

Accessing Service Record Files . 2-19
Locating Log Files . 2-19
Locating Checkpoint Directories . 2-19

Controlling MDCE Sessions from a Script 2-21
Starting MDCE Sessions . 2-21
Stopping MDCE Sessions . 2-22
Running Sessions for a Specified Time 2-22

3
Programming a Distributed Application

Program Development Guidelines . 3-2

Life Cycle of a Job . 3-3

Evaluating Functions in a Cluster . 3-5
Evaluating Functions Synchronously . 3-5
Evaluating Functions Asynchronously . 3-7

Creating and Running Jobs . 3-9
Find a Job Manager . 3-9
Create a Job . 3-10
Create Tasks . 3-11
Submit a Job to the Job Queue . 3-12
Retrieve the Job’s Results . 3-12

Sharing Data . 3-14
Directly Accessing Files . 3-14
Passing Data Between Sessions . 3-15
Passing M-Code for Startup and Finish 3-15

Managing Objects in the Job Manager 3-17
What Happens When the Client Session Ends? 3-17
Recovering Objects . 3-17
Permanently Removing Objects . 3-18

Programming Tips . 3-20
Saving Objects . 3-20
Running Tasks That Call Simulink . 3-20
Using the pause Function . 3-20
Transmitting Large Amounts of Data 3-20
Data Size Limit on Object Properties . 3-20
Interrupting a Job . 3-21

4
Function Reference

Functions — Categorical List . 4-2
General Functions . 4-2
Job Manager Functions . 4-3
Job Functions . 4-3
Task Functions . 4-4

Functions — Alphabetical List . 4-5
iii

iv Contents
5
Property Reference

Properties — Categorical List . 5-2
Job Manager Properties . 5-2
Job Properties . 5-3
Task Properties . 5-4
Worker Properties . 5-5

Properties — Alphabetical List . 5-6

Index

1

Getting Started

This chapter provides information you need to get started with the Distributed Computing Toolbox
and the MATLAB® Distributed Computing Engine. The sections are as follows.

What Are the Distributed Computing
Products? (p. 1-2)

Overview of the Distributed Computing Toolbox and the
MATLAB Distributed Computing Engine, and their
capabilities

Toolbox and Engine Components
(p. 1-5)

Descriptions of the parts and configurations of a
distributed computing setup

Using the Distributed Computing
Toolbox (p. 1-8)

Introduction to Distributed Computing Toolbox
programming with a basic example

Getting Help (p. 1-10) Explanation of how to get help on toolbox functions

1 Getting Started

1-2
What Are the Distributed Computing Products?
The Distributed Computing Toolbox and the MATLAB Distributed Computing
Engine enable you to coordinate and execute independent MATLAB operations
simultaneously on a cluster of computers, speeding up execution of large
MATLAB jobs.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks, but
tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB. The
client uses the Distributed Computing Toolbox to perform the definition of jobs
and tasks. The MATLAB Distributed Computing Engine is the product that
performs the execution of your job by evaluating each of its tasks and returning
the result to your client session.

The job manager is the part of the engine that coordinates the execution of jobs
and the evaluation of their tasks. The job manager distributes the tasks for
evaluation to the engine’s individual MATLAB sessions called workers.

What Are the Distributed Computing Products?
Basic Distributed Computing Configuration

������

���
�	
	����
��
� ������

������

���������	
���

�������

������������	
���

��
����

���

�������
1-3

1 Getting Started

1-4
The following table summarizes the distributed computing terms introduced so
far. The next section more fully explains these terms.

MATLAB Distributed Computing Terms

Name Description

Job The complete large-scale operation to perform in
MATLAB, composed of a set of tasks.

Task One segment of a job to be evaluated by a worker.

Client The MATLAB session that defines a job using the
Distributed Computing Toolbox.

Job manager The part of the MATLAB Distributed Computing
Engine that coordinates job execution, distributing
tasks to individual workers for evaluation. This is
represented in the client session by a job manager
object.

Worker The session of MATLAB in the MATLAB Distributed
Computing Engine that evaluates tasks by executing
the tasks’ functions. This is represented in the client
session by a worker object.

Toolbox and Engine Components
Toolbox and Engine Components

Job Managers, Workers, and Clients
The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its queue
are promoted, demoted, canceled, or destroyed.

Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another task.
When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

A MATLAB Distributed Computing Engine setup usually includes many
workers that can all execute tasks simultaneously, speeding up execution of
large MATLAB jobs. It is generally not important which worker executes a
specific task. The workers evaluate tasks one at a time, returning the results
to the job manager. The job manager then returns the results of all the tasks
in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.

Interactions of Distributed Computing Sessions

������

���
�	
	���

�
��
�

������

������
�
��
�

���

�

�����
��

���

�

�����
��

�	��

����
��

�	��

����
��

�	��

����
��
1-5

1 Getting Started

1-6
A large network might include several job managers as well as several client
sessions. Any client session can create, run, and access jobs on any job
manager, but a worker session is registered with and dedicated to only one job
manager at a time. The following figure shows a configuration with multiple
job managers.

Configuration with Multiple Clients and Job Managers

Components on Mixed Platforms
The Distributed Computing Toolbox and MATLAB Distributed Computing
Engine are supported on Windows, UNIX, and Macintosh platforms. Mixed
platforms are supported, so that the clients, job managers, and workers do not
have to be on the same platform.

In a mixed platform environment, be sure to follow the proper installation
instructions for the local machine on which you are installing the software.

The MATLAB Distributed Computing Engine Daemon
Every machine that hosts a worker or job manager session must also run the
MATLAB Distributed Computing Engine (MDCE) Service. The MDCE daemon
makes it possible for these processes on different machines to communicate
with each other.

���
�	
	���

�
��
�

������

������

������

�
��
�

���
�	
	���

������

������

������

�
��
�

�
��
�

Toolbox and Engine Components
The MDCE daemon also recovers worker and job manager sessions when their
host machines crash. If a worker or job manager machine crashes, when MDCE
starts up again (usually configured to start at machine boot time), it
automatically restarts the job manager and worker sessions to resume their
sessions from before the system crash.

Components Represented in the Client
A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary, the
client session can also access information about a worker session through a
worker object.

When you create a job in the client session, the job actually exists in the job
manager. The client session has access to the job through a job object. Likewise,
tasks that you define for a job in the client session exist in the job manager, and
you access them through task objects.
1-7

1 Getting Started

1-8
Using the Distributed Computing Toolbox

Overview
A typical Distributed Computing Toolbox client session includes the following
steps. Details of each step appear in “Creating and Running Jobs” on page 3-9.
A basic example follows in the next section.

1 Find a Job Manager — Your network may have one or more job managers
available. The function you use to find a job manager creates an object in
your current MATLAB session to represent the job manager that will run
your job.

2 Create a Job — You create a job to hold a collection of tasks. The job exists
on the job manager, but a job object in the local MATLAB session represents
that job.

3 Create Tasks — While your job is in the pending state, you can create tasks
to add to the job. Each task of a job can be represented by a task object in
your local MATLAB session.

4 Submit a Job to the Job Queue for Execution — When your job is completely
defined with all its tasks, you submit it to the queue in the job manager. The
job manager distributes your job’s tasks to its workers for evaluation. When
all of the workers are completed with the job’s tasks, the job manager moves
the job to the finished state.

5 Retrieve the Job’s Results — The resulting data from the evaluation of the
job is available as a property value of each task object.

Example: Programming a Basic Job
This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task performs a sum on an input array.

1 Find a job manager. Use findResource to locate a job manager and create
the job manager object jm, which represents the job manager in the cluster
whose name is MyJobManager.

jm = findResource('jobmanager','name','MyJobManager');

Using the Distributed Computing Toolbox
2 Create a job. Create job j on the job manager.

j = createJob(jm);

3 Create tasks. Create three tasks on the job j. Each task evaluates the sum of
the array that is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue. The job manager moves the job into the queue
to be executed when workers are available.

submit(j);

5 Retrieve results. Wait for the job to complete, then get the results from all
the job’s tasks.

waitForState(j)
results = getAllOutputArguments(j)
results =
 [2]
 [4]
 [6]

Example: Evaluating a Basic Function
The dfeval function allows you to evaluate a function in a cluster of workers
without having to define jobs and tasks yourself. When you can divide your job
into similar tasks, using dfeval might be an appropriate way to run your job.

results = dfeval(@sum, {[1 1] [2 2] [3 3]})
results =
 [2]
 [4]
 [6]

This example runs the job as three tasks in the same way the previous example
does.

For more information about dfeval and in what circumstances you can use it,
see “Evaluating Functions in a Cluster” on page 3-5.
1-9

1 Getting Started

1-1
Getting Help

Command-Line Help
You can get command-line help on the object functions in the Distributed
Computing Toolbox by using the syntax

help distcomp.objectType/functionName

For example, to get command-line help on the createTask function, type

help distcomp.job/createTask

The available choices for objectType are jobmanager, job, and task.

Listing Available Functions
To find the functions available for each type of object, type

methods(obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findresource('jobmanager');
methods(jm)

To see the functions available for job objects, type

job1 = createJob(jm)
methods(job1)

To see the functions available for task objects, type

task1 = createTask(job1,1,@rand,{3})
methods(task1)
0

Getting Help
Help Browser
You can open the Help browser with the doc command. To open the browser on
a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the createJob
function, type

doc distcomp/createjob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/userdata

Note The property or function name must be entered with lowercase letters,
even though function names are case sensitive in other situations.
1-11

1 Getting Started

1-1
2

2

Network Administration

This chapter provides information you need for network administration of the Distributed Computing
Toolbox and the MATLAB Distributed Computing Engine. The sections are as follows.

Preparing for Distributed Computing
(p. 2-2)

Examines network requirements and limitations for
running the Distributed Computing Toolbox and the
MATLAB Distributed Computing Engine

UNIX and Macintosh System
Administration (p. 2-4)

Configuring and running the MATLAB Distributed
Computing Engine sessions on UNIX and Macintosh
systems

Windows System Administration
(p. 2-9)

Configuring and running the MATLAB Distributed
Computing Engine sessions on Windows systems

Customizing Engine Services (p. 2-14) Overriding or modifying default parameters for scripts

Accessing Service Record Files (p. 2-19) Accessing service logs and specifying their locations

Controlling MDCE Sessions from a
Script (p. 2-21)

Using a scheduler to automate starting and stopping of
engine services

2 Network Administration

2-2
Preparing for Distributed Computing

Before You Start
Before attempting an installation of the Distributed Computing Toolbox and
MATLAB Distributed Computing Engine, read the “Getting Started” chapter
to familiarize yourself with the concepts and vocabulary of the products.

Planning Your Network Layout
Generally, there is not much difficulty in deciding which machines will run
worker processes and which will run client processes. Worker sessions usually
run on the cluster of machines dedicated to that purpose. The client session of
MATLAB usually runs where MATLAB programs are run, often on a user’s
desktop.

The job manager process should run on a stable machine, with adequate
resources to manage the number of tasks and amount of data expected in your
distributed computing applications.

The following table shows what products and processes are needed for each of
these roles in the distributed computing configuration.

The MATLAB Distributed Computing Engine (MDCE) service or daemon is
included in the engine software. It is separate from the worker and job
manager processes, and it must be running on all machines that run worker or
job manager sessions.

You can install both toolbox and engine software on the same machine, so that
one machine can run both client and engine sessions.

Session Product Processes

Client Distributed Computing Toolbox MATLAB with toolbox

Worker MATLAB Distributed
Computing Engine

MDCE service; worker

Job manager MATLAB Distributed
Computing Engine

MDCE service; job
manager

Preparing for Distributed Computing
Network Requirements
The Distributed Computing Toolbox and the MATLAB Distributed Computing
Engine require these network configurations:

• A network configuration that supports Jini.

Jini technology facilitates communication between the machines and
processes that comprise a distributed computing configuration.

The MATLAB Distributed Computing Engine provides Jini as part of the job
manager scripts, so you do not need to download or install it separately. Jini
starts up automatically with the job manager service if it is not already
running.

For information about Jini network technology, go to the Web site
http://www.jini.org/.

• Distributed computing processes rely on a DNS service being present on the
network in order to locate one another.

• To allow communications between them, services of the MATLAB
Distributed Computing Engine must be within multicast range of each other
on the UDP port numbered 4160.

• Distributed computing processes make use of several TCP ports. If you need
to control which ports these services use, see “Setting TCP Ports” on
page 2-17.

• On UNIX systems, the command
hostname -i

must return the address of a network interface card (NIC) instead of the
loopback address, so that distributed computing processes can recognize and
communicate with each other. Distributed computing processes will work
correctly on machines with multiple NICs.

• The job manager’s checkpoint directories can grow to occupy a lot of disk
space. Be sure to locate them where they can be accommodated. To control
where the checkpoint directories are stored, see “Locating Checkpoint
Directories” on page 2-19.
2-3

2 Network Administration

2-4
UNIX and Macintosh System Administration
This section describes the steps you take to configure and run the MATLAB
Distributed Computing Engine on a cluster of UNIX and/or Macintosh
machines:

• “Configuring the MDCE Daemon” on page 2-4

• “Starting Job Managers” on page 2-5

• “Starting Workers” on page 2-6

• “Stopping Job Managers and Workers” on page 2-7

• “Stopping and Uninstalling the MDCE Daemon” on page 2-8

Before You Start

Finding Your Installation
Throughout this section, MATLABROOT refers to the location of your installed
MATLAB Distributed Computing Engine. Where you see this term used in the
instructions that follow, substitute the path to your location or a link that
points to it.

Getting Information from Logs
The MDCE services record their activities and messages in log files. If you
encounter any problems or error messages during any steps of administering
these services, consult the log files in the /var/log/mdce directory for more
information. (See “Locating Log Files” on page 2-19 for information on
changing the location of these log files.)

Configuring the MDCE Daemon
The MDCE daemon must be running on all machines being used for job
managers or workers. This daemon facilitates communications between
processes, and manages the MATLAB Distributed Computing Engine services.
One of the major tasks of the MDCE daemon is to recover job manager and
worker sessions after a system crash, so that jobs and tasks are not lost as a
result of such accidents.

You need to configure the MDCE daemon on each machine that will be running
a job manager or worker session.

UNIX and Macintosh System Administration
Note You must have root privileges to install the MDCE daemon.

1 On UNIX systems that support chkconfig and that will be running job
managers or worker sessions, enter the following commands. These
commands register the MDCE daemon as a known service and configure it
to start automatically at system boot time.

cd /etc/init.d/
ln -s MATLABROOT/toolbox/distcomp/bin/mdce mdce

chkconfig --add mdce
chkconfig --level 345 mdce on

Note To make use of chkconfig in a Red Hat Linux system, you might prefer
to link to MATLABROOT/toolbox/distcomp/bin/util/rh_mdce rather than to
MATLABROOT/toolbox/distcomp/bin/mdce, as is it customized for Red Hat
Linux.

2 Start the MDCE daemon by typing the command

/etc/init.d/mdce start

or

Reboot your machine. Rebooting your machine starts the MDCE daemon.

Once installed, the MDCE daemon starts running each time the machine is
rebooted. The MDCE daemon continues to run until explicitly stopped or
uninstalled, regardless of whether a job manager or worker session is running.

Starting Job Managers
On the computer that will run the job manager, enter the following commands,
using any text you want for the name MyJobManager.

cd MATLABROOT/toolbox/distcomp/bin
startjobmanager.sh -name MyJobManager
2-5

2 Network Administration

2-6
Note If you have more than one job manager on your cluster, each must have
a unique name.

Where to Find More Information. The startjobmanager script has options that
allow you to delete the job manager’s history or alter the startup default
parameters. For descriptions of these options, see “Overriding the Script
Defaults” on page 2-14. For a command-line listing of all options, type

startjobmanager.sh -help

Starting Workers
On each computer used as a worker, enter the following commands, using the
text for MyJobManager that identifies the name of the job manager you want
this worker registered with.

cd MATLABROOT/toolbox/distcomp/bin
startworker.sh -jobmanager MyJobManager

To run a job manager session and a worker session on the same machine, run
the scripts for each as usual.

To run more than one worker session on the same machine, give each worker
a unique name with the -name option.

startworker.sh -jobmanager MyJobManager -name worker1
startworker.sh -jobmanager MyJobManager -name worker2

Where to Find More Information. The startworker script has options that allow
you to delete the worker’s history or alter the startup default parameters. For
descriptions of these options, see “Overriding the Script Defaults” on page 2-14.
For a command-line listing of all options, type

startworker.sh -help

UNIX and Macintosh System Administration
Note If the number of threads created by the engine services on a UNIX
machine exceeds the limitation set by the maxproc value, the services will fail
and generate an out-of-memory error. You can check your maxproc value on
UNIX with the limit command. (Different versions of UNIX might have
different names for this property instead of maxproc, such as descriptors on
Solaris.)

Stopping Job Managers and Workers
After all Distributed Computing Toolbox sessions are finished, you might want
to shut down the engine network services so that they are not consuming
network resources.

1 On the machine running the job manager, enter the commands

cd MATLABROOT/toolbox/distcomp/bin
stopjobmanager.sh -name MyJobManager

If you have more than one job manager running on this machine, you can
stop each of them individually by name.

For a list of all options to the script, type

stopjobmanager.sh -help

2 On each machine running a worker session, enter the commands

cd MATLABROOT/toolbox/distcomp/bin
stopworker.sh

If you have more than one worker session running on this machine, you can
stop each of them individually by name.

stopworker.sh -name worker1
stopworker.sh -name worker2

For a list of all options to the script, type

stopworker.sh -help
2-7

2 Network Administration

2-8
Stopping and Uninstalling the MDCE Daemon
Normally, you configure the MDCE daemon to start at system boot time and
continue running until the machine is shut down. However, if you plan to
uninstall the MATLAB Distributed Computing Engine from a machine, you
might want to uninstall the MDCE daemon also, as it will not be needed any
more.

Note You must have root privileges to stop or uninstall the MDCE daemon.

1 Use the following command to stop the MDCE daemon.

/etc/init.d/mdce stop

2 Remove the installed link to prevent the daemon from starting up again at
system reboot.

cd /etc/init.d/
rm mdce

Windows System Administration
Windows System Administration
This section describes the steps you take to configure and run the MATLAB
Distributed Computing Engine on a cluster of Windows machines:

• “Configuring the MDCE Service” on page 2-9

• “Starting Job Managers” on page 2-11

• “Starting Workers” on page 2-11

• “Stopping Job Managers and Workers” on page 2-12

• “Stopping and Uninstalling the MDCE Service” on page 2-13

Before You Start

Finding Your Installation
Throughout this section, MATLABROOT refers to the location of your installed
MATLAB Distributed Computing Engine. Where you see this term used in the
instructions that follow, substitute the path to your location.

Getting Information from Logs
The MDCE services record their activities and messages in log files. If you
encounter any problems or error messages during any steps of administering
these services, consult the log files in the <TEMP>\MDCE\Log folder (typically,
C:\TEMP\MDCE\Log) for more information. (See “Locating Log Files” on
page 2-19 for information on changing the location of these log files.)

Configuring the MDCE Service
The MDCE service must be running on all machines being used for job
managers or workers. This service facilitates communications between
processes, and manages the MATLAB Distributed Computing Engine services.
One of the major tasks of the MDCE service is to recover job manager and
worker sessions after a system crash, so that jobs and tasks are not lost as a
result of such accidents.

You need to install the MDCE service only once on each machine.

1 On all Windows PCs that will be running job managers or worker sessions,
open a Command Prompt window and enter the following commands.
2-9

2 Network Administration

2-1
cd MATLABROOT\toolbox\distcomp\bin\win32
mdce install

This step installs the mdce service.

2 Verify the installation by going to Start -> Control Panel and
double-clicking on Administrative Tools, then double-clicking on
Services. In the list of services is MATLAB Distributed Computing Engine
Service. Double-click on this entry to make the following dialog appear.

Note that the Startup type is Automatic. In this mode, the MDCE service
starts up when the machine is rebooted.

3 To start the MDCE service without rebooting, click Start in the MATLAB
Distributed Computing Engine Properties dialog box

or

Type in the Command Prompt window

cd MATLABROOT\toolbox\distcomp\bin\win32
mdce start
0

Windows System Administration
Once installed, the MDCE service starts running each time the machine is
rebooted. The MDCE service continues to run until explicitly stopped or
uninstalled, regardless of whether a job manager or worker session is running.

Starting Job Managers
On the Windows PC that will run the MATLAB Distributed Computing Engine
job manager, open a Command Prompt window and enter the following
commands, using any text you want for MyJobManager.

cd MATLABROOT\toolbox\distcomp\bin\win32
startjobmanager -name MyJobManager

Note If you have more than one job manager on your cluster, each must have
a unique name.

Where to Find More Information. The startjobmanager script has options that
allow you to delete the job manager’s history or alter the startup default
parameters. For descriptions of these options, see “Overriding the Script
Defaults” on page 2-14. For a command-line listing of all options, type

startjobmanager -help

Starting Workers
On each Windows PC used as a worker, open a Command Prompt window and
enter the following commands, using the text for MyJobManager that identifies
the name of the job manager you want this worker registered with.

cd MATLABROOT\toolbox\distcomp\bin\win32
startworker -jobmanager MyJobManager

To run a job manager session and a worker session on the same machine, run
the scripts for each as usual.

To run more than one worker session on the same machine, give each worker
a unique name with the -name option.

startworker -jobmanager MyJobManager -name worker1
startworker -jobmanager MyJobManager -name worker2
2-11

2 Network Administration

2-1
Where to Find More Information. The startworker script has options that allow
you to delete the worker’s history or alter the startup default parameters. For
descriptions of these options, see “Overriding the Script Defaults” on page 2-14.
For a command-line listing of all options, type

startworker -help

Stopping Job Managers and Workers
After all Distributed Computing Toolbox sessions are finished, you might want
to shut down the engine network services so that they are not consuming
network resources.

1 On the Windows PC running the MATLAB Distributed Computing Engine
job manager, open a Command Prompt window and enter the following
commands.

cd MATLABROOT\toolbox\distcomp\bin\win32
stopjobmanager -name MyJobManager

If you have more than one job manager running on this machine, you can
stop each of them individually by name.

For a list of all options to the script, type

stopjobmanager -help

2 On each Windows PC running a worker session, enter the commands

cd MATLABROOT\toolbox\distcomp\bin\win32
stopworker

If you have more than one worker session running on this machine, you can
stop each of them individually by name.

stopworker -name worker1
stopworker -name worker2

For a list of all options to the script, type

stopworker -help
2

Windows System Administration
Stopping and Uninstalling the MDCE Service
Normally, you configure the MDCE service to start at system boot time and
continue running until the machine is shut down. If you need to stop the MCDE
service while leaving the machine on, open a Command Prompt window and
enter the following commands.

cd MATLABROOT\toolbox\distcomp\bin\win32
mdce stop

If you plan to uninstall the MATLAB Distributed Computing Engine from a
machine, you might want to uninstall the MDCE service also, as it will no
longer be needed.

You do not need to stop the service before uninstalling it.

To uninstall the MDCE service, open a Command Prompt window and enter
the following commands.

cd MATLABROOT\toolbox\distcomp\bin\win32
mdce uninstall
2-13

2 Network Administration

2-1
Customizing Engine Services
The scripts of the MATLAB Distributed Computing Engine run using several
default parameters. You can customize the scripts, as described in the
following sections:

• “Overriding the Script Defaults” on page 2-14

• “Defining the Script Defaults” on page 2-15

Overriding the Script Defaults

Specifying the Defaults File
The default parameters used by the MDCE service, job managers, and workers
are defined in the file MATLABROOT/toolbox/distcomp/bin/mdce_def.sh
(UNIX) or MATLABROOT\toolbox\distcomp\bin\win32\mdce_def.bat
(Windows). Before starting the MDCE service, a job manager, or worker, you
can edit this file to set the default parameters with values you require.

Alternatively, you can make a copy of this file, modify it, and specify that this
copy be used for the default parameters.

On UNIX or Macintosh,

startjobmanager.sh -mdcedef my_mdce_def.sh
startworker.sh -mdcedef my_worker_def.sh

On Windows,

startjobmanager -mdcedef my_mdce_def.bat
startworker -mdcedef my_worker_def.bat

For more information, see “Defining the Script Defaults” on page 2-15.

Starting in a Clean State
When a job manager or worker starts up, it normally resumes its session from
the past. This way, a job queue won’t be destroyed or lost if the job manager
machine crashes or if the job manager is inadvertently shut down. If you want
to start up a job manager or worker from a clean state, with all history deleted,
use the -clean flag on the start command.
4

Customizing Engine Services
On UNIX or Macintosh,

startjobmanager.sh -clean -name MyJobManager
startworker.sh -clean -jobmanager MyJobManager

On Windows,

startjobmanager -clean -name MyJobManager
startworker -clean -jobmanager MyJobManager

Defining the Script Defaults
The scripts for the engine services require values for several parameters. These
parameters set the process name, the user name, log file location, ports, etc.
Some of these can be set using flags on the command lines, but the full set of
user-configurable parameters can be accessed in the mdce_def file.

Note The startup script flags take precedence over the settings in the
mdce_def file.

The default parameters used by the engine service scripts are defined in the file
MATLABROOT\toolbox\distcomp\bin\win32\mdce_def.bat (Windows), or
MATLABROOT/toolbox/distcomp/bin/mdce_def.sh (UNIX/Macintosh). To set
the default parameters, you edit this file before starting a service.

Alternatively, you can make a copy of this file, modify it, and specify that this
new copy be used for the service default parameters using the -mdcedef flag.

Note that if you specify a new mdce_def file instead of the default file for one of
the services, the new file is not automatically used by the other services. If you
want to use the same alternative file for all your services, you must specify it
for each service you call.

For example, on Windows systems, you use the parameter file
my_mdce_def.bat by typing

mdce -mdcedef my_mdce_def.bat
startjobmanager -mdcedef my_mdce_def.bat
startworker -mdcedef my_mdce_def.bat
stopworker -mdcedef my_mdce_def.bat
stopjobmanager -mdcedef my_mdce_def.bat
2-15

2 Network Administration

2-1
On UNIX or Macintosh systems, you use the parameter file my_mdce_def.sh by
typing

mdce -mdcedef my_mdce_def.sh
startjobmanager.sh -mdcedef my_mdce_def.sh
startworker.sh -mdcedef my_mdce_def.sh
stopworker.sh -mdcedef my_mdce_def.sh
stopjobmanager.sh -mdcedef my_mdce_def.sh

Note If a job manager is started with a name that was previously used on the
same host, it will use the settings already established for that previous
session. To use updated settings in the mdce_def file, use the -clean flag when
starting the job manager again.
6

Customizing Engine Services
Setting TCP Ports
By default, job manager and worker sessions run on anonymous ports, though
the job manager lookup service will use port 4160 if it is available. You can
specify the port that a job manager or worker service runs on by specifying the
following port settings in the mdce_def file.

Note If you want to run more than one job manager on the same machine,
they must all have unique names and unique port numbers. You can either
specify these parameters using flags with the startup commands, or use
different mdce_def files for each.

Parameter Description

JOB_MANAGER_UNICAST_PORT This setting specifies the port for discovering
the job manager’s lookup service. The port
must be known if you are going to use the
'LookupURL' option of the findResource
function. You can set it by modifying it in the
mdce_def file, or you can look up its value in
the log file LOGBASE/mdce-service.log (if
no port is displayed with the host in the
entry for the service, it is using port 4160).

MIN_MDCE_PORT
MAX_MDCE_PORT

These settings define a range of ports for the
job manager and worker sessions to use. The
MIN_MDCE_PORT value is used by the job
manager’s lookup service. If you run more
than one job manger, those started after the
first one should use different mdce_def files
to define a unique range of ports for each job
manager.

PHOENIX_PORT_1
PHOENIX_PORT_2

The MDCE service (daemon) uses these
ports. Modify them if the default values are
not available on your systems.
2-17

2 Network Administration

2-1
Setting the User
By default, the job manager and worker services run as the user who starts
them. You can run the services as a different user with the following settings
in the mdce_def file.

Note On UNIX systems, MDCEUSER requires that the current machine has the
sudo utility installed, and that the current user be allowed to use sudo to
execute commands as the user identified by MDCEUSER. For further
information, refer to your system documentation on the sudo and sudoers
utilities (for example, man sudo and man sudoers).

Note On Windows systems, when executing the mdce start script, the user
defined by MDCEUSER must be listed among those who can log on as a service.
To see the list of valid users, click the Windows Start -> Settings -> Control
Panel. Double-click Administrative Tools, then Local Security Policy. In
the tree, select User Rights Assignment, then in the right panel, double-click
Log on as a service. This dialog must list the user defined for MDCEUSER in
your mdce_def.bat file. If not, you can add the user to this dialog according to
the instructions in the mdce_def.bat file, or when running mdce start, you
can use another mdce_def.bat file that specifies a listed user.

Parameter Description

MDCEUSER Set this parameter to run the MDCE services as a user
different from the user who starts the service. On a
UNIX system, set the value before starting the service;
on a Windows system, set it before installing the
service.

MDCEPASS On a Windows system, set this parameter to specify the
password for the user identified in the MDCEUSER
parameter; otherwise, the system will prompt you for
the password when the service is installed.
8

Accessing Service Record Files
Accessing Service Record Files
The services of the MATLAB Distributed Computing Engine generate various
record files in the normal course of their operations. The MDCE service, job
manager, and worker sessions all generate such files. The types of information
stored by the services are described in the following sections:

• “Locating Log Files” on page 2-19

• “Locating Checkpoint Directories” on page 2-19

Locating Log Files
Log files for each service contain entries for the services’ operations. These
might be of particular interest to the network administrator in cases when
problems arise.

Locating Checkpoint Directories
Checkpoint directories contain information related to persistence data, which
the engine services use to create continuity from one instance of a session to
another. For example, if you stop and restart a job manager, the new session
will continue the old session, using all the same data.

Platform File Location

Windows On Windows systems, the default location of the log files
is <TEMP>\MDCE\Log, where <TEMP> is the value of the
system TEMP variable. For example, if TEMP is set to
C:\TEMP, then the log files are placed in
C:\TEMP\MDCE\Log.

You can set alternative locations for the log files by
modifying the LOGBASE setting in the mdce_def.bat file
for any of the engine scripts.

UNIX and
Macintosh

On UNIX and Macintosh systems, the default location
of the log files is /var/log/mdce/.

You can set alternative locations for the log files by
modifying the LOGBASE setting in the mdce_def.sh file
for any of the engine scripts.
2-19

2 Network Administration

2-2
A primary feature offered by the checkpoint directories is in crash recovery.
This allows engine services to automatically resume their sessions after a
system goes down and comes back up, without losing any data. (If a job
manager crashes, its workers can take up to 2 minutes to reregister with it.)

Platform File Location

Windows On Windows systems, the default location of the
checkpoint directories is <TEMP>\MDCE\Checkpoint,
where <TEMP> is the value of the system TEMP variable.
For example, if TEMP is set to C:\TEMP, then the
checkpoint directories are placed in
C:\TEMP\MDCE\Checkpoint.

You can set alternative locations for the checkpoint
directories by modifying the CHECKPOINTBASE setting in
the mdce_def.bat file for any of the engine scripts.

UNIX and
Macintosh

On UNIX and Macintosh systems, the checkpoint
directories are placed by default in /var/lib/mdce/.

You can set alternative locations for the checkpoint
directories by modifying the CHECKPOINTBASE setting in
the mdce_def.sh file for any of the engine scripts.
0

Controlling MDCE Sessions from a Script
Controlling MDCE Sessions from a Script
Many clusters use batch processing systems such as a Portable Batch System
(PBS) or Load Sharing Facility (LSF) in which a central job manager or
scheduler manages the allocation of network resources to users. MDCE
sessions can run within such an environment. A user submits a batch job to
request some nodes in the cluster. The batch job starts the MDCE service and
an MDCE job manager or worker on each of these nodes. The following sections
show generic scripts for starting and stopping the MDCE sessions from the
batch job:

• “Starting MDCE Sessions” on page 2-21

• “Stopping MDCE Sessions” on page 2-22

• “Running Sessions for a Specified Time” on page 2-22

Starting MDCE Sessions
To start MDCE sessions in the cluster from a batch job, use a script like the
following. This example is generic:

Select one node to be the job manager
JOB_MANAGER_NODE = 18

foreach <cluster nodes>
<execute on node>:

mdce start
if <node> == JOB_MANAGER_NODE

startjobmanager -name MyJobManager
else

startworker -jobmanager MyJobManager
end

end

The Distributed Computing Toolbox client session runs on a machine that is
not one of the cluster nodes, but it can access the job manager using
findResource with a multicast call (not using the LookupURL option) or with a
unicast call (using the LookupURL option).
2-21

2 Network Administration

2-2
Stopping MDCE Sessions
To stop MDCE sessions in the cluster from a batch job, use a script like the
following generic example:

JOB_MANAGER_NODE = 18
foreach <cluster nodes>

<execute on node>:
if <node> == JOB_MANAGER_NODE

stopjobmanager -name MyJobManager
else

stopworker -jobmanager MyJobManager
end
mdce stop

end

Running Sessions for a Specified Time
To prevent another cluster job from executing on a node while the node is
running an MDCE session, use a script like the following. After a specified
time, the batch job stops the MDCE sessions and the cluster job completes.

Select one node to be the job manager
JOB_MANAGER_NODE = 18

foreach <cluster nodes>
<execute on node>:

mdce start
if <node> == JOB_MANAGER_NODE

startjobmanager -name MyJobManager
else

startworker -jobmanager MyJobManager
end

<wait allotted time>

if <node> == JOB_MANAGER_NODE
stopjobmanager -name MyJobManager

else
stopworker -jobmanager MyJobManager

end
mdce stop

end
2

3

Programming a
Distributed Application

This chapter provides information you need for programming with the Distributed Computing
Toolbox to define and run jobs. The sections are as follows.

Program Development Guidelines
(p. 3-2)

Suggested method for program development

Life Cycle of a Job (p. 3-3) Stages of a job from creation to completion

Evaluating Functions in a Cluster
(p. 3-5)

How to run a job without having to manage job manager,
job, and task objects

Creating and Running Jobs (p. 3-9) How to create a job with the Distributed Computing
Toolbox and run it on the MATLAB Distributed
Computing Engine

Sharing Data (p. 3-14) How to share data between client and worker sessions

Managing Objects in the Job Manager
(p. 3-17)

How to access objects in the job manager from different
client sessions

Programming Tips (p. 3-20) Helpful hints for good programming practice

3 Programming a Distributed Application

3-2
Program Development Guidelines
When writing code for the Distributed Computing Toolbox, you should advance
one step at a time in the complexity of your application. Verifying your program
at each step prevents your having to debug several potential problems
simultaneously. If you run into any problems at any step along the way, back
up to the previous step and reverify your code.

The recommended programming practice for distributed computing
applications is

1 Run code normally on your local machine. First verify your functions so
that as you progress, you are not trying to debug the functions and the
distribution at the same time.

2 Run code distributed to only one node, where that node is likely the local
machine. Create a job and task to verify that the function is working in a
distributed computing model.

3 Distribute the code to two nodes. Expand your job to include two tasks,
preferably executed on two different workers.

4 Distribute the code to N nodes. Scale up your job to include as many tasks
as you need.

Note The client session of MATLAB must be running the Java Virtual
Machine (JVM) to use the Distributed Computing Toolbox. Do not start
MATLAB with the -nojvm flag.

Life Cycle of a Job
Life Cycle of a Job
When you create and run a job, it progresses through a number of stages. Each
stage of a job is reflected in the value of the job object’s State property, which
can be pending, queued, running, or finished. Each of these stages is briefly
described in this section.

The figure below illustrated the stages in the life cycle of a job. In the job
manager, the jobs are shown categorized by their state. Some of the functions
you use for managing a job are createJob, submit, and
getAllOutputArguments.

Stages of a Job

The following table describes each stage in the life cycle of a job.

���������	

��
	��

��
�	

��
�	

��
�	

���
���

���
���

���
���
���

���

���

���

���
���
���

���

���������
	
����

�������

������ 	������

�������

������
��
���

����	

��
�	

��
�	

3-3

3 Programming a Distributed Application

3-4
Note that when a job is finished, it remains in the job manager, even if you clear
all the objects from the client session. The job manager keeps all the jobs it has
executed, until you restart the job manager in a clean state. Therefore, you can
retrieve information from a job at a later time or in another client session, so
long as the job manager has not been restarted with the -clean option.

Job Stage Description

Pending You create a job on the job manager with the createJob
function in your client session of the Distributed Computing
Toolbox. The job’s first state is pending. This is when you
define the job by adding tasks to it.

Queued When you execute the submit function on a job, the job
manager places the job in the queue, and the job’s state is
queued. The job manager executes jobs in the queue in the
sequence in which they are submitted, all jobs moving up the
queue as the jobs before them are finished. You can change
the order of the jobs in the queue with the promote and
demote functions.

Running When a job reaches the top of the queue, the job manager
distributes the job’s tasks to worker sessions for evaluation.
The job’s state is running. If more workers are available than
necessary for a job’s tasks, the job manager begins executing
the next job. In this way, there can be more than one running
job at a time.

Finished When all of a job’s tasks have been evaluated, a job is moved
to the finished state. At this time, you can retrieve the
results from all the tasks in the job with the function
getAllOutputArguments.

Evaluating Functions in a Cluster
Evaluating Functions in a Cluster
In many cases, the tasks of a job are all the same, or there are a limited number
of different kinds of tasks in a job. The Distributed Computing Toolbox offers a
solution for these cases that alleviates you from having to define individual
tasks and jobs when evaluating a function in a cluster of workers. The two ways
of evaluating a function on a cluster are described in the following sections:

• “Evaluating Functions Synchronously” on page 3-5

• “Evaluating Functions Asynchronously” on page 3-7

Evaluating Functions Synchronously
When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated, the
number of tasks to divide the job into, and the variable into which the results
are returned. Synchronous evaluation in a cluster means that MATLAB is
blocked until the evaluation is complete and the results are assigned to the
designated variable. So you provide the necessary information, while the
Distributed Computing Toolbox handles all the job-related aspects of the
function evaluation.

When executing the dfeval function, the toolbox performs all these steps of
running a job:

1 Finds a job manager

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager

5 Retrieves the results from the job

Scope of dfeval
By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by the Distributed Computing Toolbox. However, this narrow functionality
meets the requirements of many straightforward applications. To focus the
scope of dfeval, the following limitations apply:
3-5

3 Programming a Distributed Application

3-6
• You can pass property values to the job object, but you cannot set any
task-specific properties, including callback functions

• All the tasks in the job must have the same number of input arguments.

• All the tasks in the job must have the same number of output arguments.

• You do not have direct access to the job manger, job, or task objects, i.e., there
are no objects in your MATLAB workspace to manipulate (though you can
get them from findResource and the properties of the job manager). Note
that dfevalasync returns a job object.

• Without access to the objects and their properties, you do not have control
over the handling of errors.

Example: Using dfeval
Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[A, B] = dfeval(@myfun, {a b c d}, {e f g h}, {w x y z});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number of
elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, A and B. These cell arrays will have four elements each, for
the four tasks. The first element of A will have the first output argument from
the first task, the first element of B will have the second argument from the
first task, and so on.

The following table shows how the job is divided into tasks and where the
results are returned.

Task Function Call Results

myfun(a,e,w) A{1}, B{1}

myfun(b,f,x) A{2}, B{2}

myfun(c,g,y) A{3}, B{3}

myfun(d,h,z) A{4}, B{4}

Evaluating Functions in a Cluster
So using one dfeval line would be equivalent to the following code, except that
dfeval can run all the statements in parallel on separate machines.

[A{1}, B{1}] = myfun(a,e,w);
[A{2}, B{2}] = myfun(b,f,x);
[A{3}, B{3}] = myfun(c,g,y);
[A{4}, B{4}] = myfun(d,h,z);

For further details and examples of the dfeval function, see the dfeval
reference page.

Evaluating Functions Asynchronously
The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job off to the
job manager and get access to the command line while the job is being run
asynchronously, you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To run the example of the previous section asynchronously, type

Job1 = dfevalasync(@myfun, 2, {a b c d}, {e f g h}, {w x y z});

Note that you have to specify the number of output arguments that each task
will return (2, in this example).

The MATLAB session does not wait for the job to execute, but returns the
prompt right away. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(Job1,'finished')
data = getAllOutputArguments(Job1)
3-7

3 Programming a Distributed Application

3-8
The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,
each row of the cell array data will have two elements. So, data{1,1} contains
the first output argument from the first task, data{1,2} contains the second
argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.

Creating and Running Jobs
Creating and Running Jobs
For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with the
Distributed Computing Toolbox:

• “Find a Job Manager” on page 3-9

• “Create a Job” on page 3-10

• “Create Tasks” on page 3-11

• “Submit a Job to the Job Queue” on page 3-12

• “Retrieve the Job’s Results” on page 3-12

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created, you
can shut down your client session, restart it, and your job will still be stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.

Find a Job Manager

Note The client session of MATLAB must be running the Java Virtual
Machine (JVM) to use the Distributed Computing Toolbox. Do not start
MATLAB with the -nojvm flag.

You use the findresource function to identify available job managers and to
create an object representing a job manager in your local MATLAB session.

If you do not specify any property values to search on, findresource returns
all available job managers.

all_managers = findResource('jobmanager')

You can examine the properties of each job manager to identify which one you
want to use.
3-9

3 Programming a Distributed Application

3-1
for i = 1:length(all_managers)
 get(all_managers(i))
end

When you have identified the job manager you want to use, you can isolate it
and create a single object.

jm = all_managers(3)

To find a specific job manager, use parameter-value pairs for matching.

jm = findResource('jobmanager', 'Name', 'MyJobManager')
get(jm)
 Name: 'MyJobManager'
 Hostname: 'bonanza'
 HostAddress: '123.123.123.123'
 Jobs: [0x1 double]
 State: 'running'
 NumberOfBusyWorkers: 0
 BusyWorkers: [0x1 double]
 NumberOfIdleWorkers: 2
 IdleWorkers: [2x1 distcomp.worker]

Create a Job
You create a job with the createJob function. Although you execute this
command in the client session, the job is actually created on the job manager.

job1 = createJob(jm)

This statement creates a job on the job manager jm, and creates the job object
job1 in the client session. Use get to see the properties of this job object.

get(job1)
 Name: 'job_3'
 ID: 3
 UserName: 'eng864'
 Tag: ''
 State: 'pending'
 RestartWorker: 0
 Timeout: Inf
 MaximumNumberOfWorkers: 2.1475e+009
 MinimumNumberOfWorkers: 1
0

Creating and Running Jobs
 CreateTime: 'Thu Oct 21 19:38:08 EDT 2004'
 SubmitTime: ''
 StartTime: ''
 FinishTime: ''
 Tasks: [0x1 double]
 FileDependencies: {0x1 cell}
 JobData: []
 Parent: [1x1 distcomp.jobmanager]
 UserData: []
 QueuedFcn: []
 RunningFcn: []
 FinishedFcn: []

Note that the job’s State property is pending. This means the job has not been
queued for running yet, so you can now add tasks to it.

The job manager’s Jobs property is now a 1-by-1 array of distcomp.job
objects, indicating the existence of your job.

get(jm)
 Name: 'MyJobManager'
 Hostname: 'bonanza'
 HostAddress: '123.123.123.123'
 Jobs: [1x1 distcomp.job]
 State: 'running'
 NumberOfBusyWorkers: 0
 BusyWorkers: [0x1 double]
 NumberOfIdleWorkers: 2
 IdleWorkers: [2x1 distcomp.worker]

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and
“Sharing Data” on page 3-14.

Create Tasks
After you have created your job, and while it is still in the pending state, you
can create tasks for the job. Tasks define the functions to be evaluated by the
workers during the running of the job. Often, the tasks of a job are all identical.
In this example, each task will generate a 3-by-3 matrix of random numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
3-11

3 Programming a Distributed Application

3-1
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks properties of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =
 distcomp.task: 5-by-1

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the job
queue.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);

Display the results from each task.

for i = 1:5
 disp(results{i})
end
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

 0.4447 0.9218 0.4057
 0.6154 0.7382 0.9355
 0.7919 0.1763 0.9169
2

Creating and Running Jobs
 0.4103 0.3529 0.1389
 0.8936 0.8132 0.2028
 0.0579 0.0099 0.1987

 0.6038 0.0153 0.9318
 0.2722 0.7468 0.4660
 0.1988 0.4451 0.4186

 0.8462 0.6721 0.6813
 0.5252 0.8381 0.3795
 0.2026 0.0196 0.8318
3-13

3 Programming a Distributed Application

3-1
Sharing Data
Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing data are explained in the following sections:

• “Directly Accessing Files” on page 3-14

• “Passing Data Between Sessions” on page 3-15

• “Passing M-Code for Startup and Finish” on page 3-15

Directly Accessing Files
If the workers all have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

Defining the Path
You must define each worker session’s path so that it looks for files in the right
places. You can define the path

• When MATLAB starts up on a worker by putting the path command in the
worker machine’s MATLABROOT\toolbox\local\startup.m file

• For each new job on a worker by putting the command in the worker’s
MATLABROOT\toolbox\distcomp\user\jobStartup.m file

• For each new task on a worker by putting the command in the worker’s
MATLABROOT\toolbox\distcomp\user\taskStartup.m file.

Setting the User Name
Access to files among shared resources can depend upon permissions based on
the user name. You can set the user name with which the job manager and
worker services of the MATLAB Distributed Computing Engine run by setting
the MDCEUSER value in the mdce_def file before starting the services. For
Windows systems, there is also a MDCEPASS for providing the account password
for the specified user. For an explanation of service default settings and the
mdce_def file, see “Defining the Script Defaults” on page 2-15.
4

Sharing Data
Passing Data Between Sessions
A number of properties on task and job objects are designed for passing code or
data from client to job manager to worker, and back. This information could
include M-code necessary for task evaluation, or the input data for processing
or output data resulting from task evaluation. All these properties are
described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent to
every worker that evaluates tasks for that job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of the
worker MATLAB session.

The maximum amount of data that can be sent in a single call for setting
properties is approximately 50 MB. This limit applies to the OutputArguments
property as well as to data passed into a job. If the limit is exceeded, you get an
error message.

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the worker’s
MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean up a worker session as it
begins or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs its
first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.
3-15

3 Programming a Distributed Application

3-1
Empty versions of these files are provided in the directory

MATLABROOT/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass them
to the job as part of the FileDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property. If any of these files is not included in that property, the worker uses
the version of the file in the toolbox/distcomp/user directory of the worker’s
MATLAB installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.
6

Managing Objects in the Job Manager
Managing Objects in the Job Manager
Because all the data of jobs and tasks resides in the job manager, these objects
continue to exist even if the client session that created them has ended. The
following sections describe how to access these objects and how to permanently
remove them:

• “What Happens When the Client Session Ends?” on page 3-17

• “Recovering Objects” on page 3-17

• “Permanently Removing Objects” on page 3-18

What Happens When the Client Session Ends?
When you close the client session of the Distributed Computing Toolbox, all of
the objects in the workspace are cleared. However, the objects in the MATLAB
Distributed Computing Engine remain in place. Job objects and task objects
reside on the job manager. Local objects in the client session can refer to job
managers, jobs, tasks, and workers. When the client session ends, only these
local reference objects are lost, not the actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the job
manager. The job manager maintains its job and task objects. You can retrieve
the job results later in another client session.

Recovering Objects
A client session of the Distributed Computing Toolbox can access any of the
objects in the MATLAB Distributed Computing Engine, whether these object
were created by the current client session or another client session.

You create job manager and worker objects in the client session by using the
findResource function. These objects refer to sessions running in the engine.

jm = findResource('jobmanager','Name','Job_Mgr_123')

You can find all available job managers by omitting any specific property
information.

jm_set = findResource('jobmanager')
3-17

3 Programming a Distributed Application

3-1
The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager is
of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.

all_jobs = jm.Jobs

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm,'State','finished')

This command returns an array of job objects that reference all finished jobs on
the job manager jm.

Resetting Callback Properties
When restarting a client session, you lose the settings of any callback
properties (for example, the FinishedFcn property) on jobs or tasks. These
properties are commonly used to get notifications in the client session of state
changes in their objects. When you create objects in a new client session that
reference existing jobs or tasks, you must reset these callback properties if you
intend to use them.

Permanently Removing Objects
Jobs in the job manager continue to exist even after they are finished, and after
the job manager is stopped and restarted. The ways to permanently remove
jobs from the job manager are explained in the following sections:

• “Destroying Selected Objects”

• “Starting a Job Manager from a Clean State”
8

Managing Objects in the Job Manager
Destroying Selected Objects
From the command line in the client MATLAB session you can call the destroy
function for any job or task object. If you destroy a job, you destroy all tasks
contained in that job.

For example, find and destroy all finished jobs in your job manager.

jm = findResource('jobmanager','name','MyJobManager')
finished_jobs = findJob(jm,'State','finished')
destroy(finished_jobs)
clear finished_jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Starting a Job Manager from a Clean State
When you start a job manager, by default it starts so that it resumes its former
session with all jobs intact. Alternatively, you can start a job manager from a
clean state with all its former history deleted. Starting from a clean state
permanently removes all job and task data from the job manager of the
specified name on a particular host.

As a network administration feature, the -clean flag of the job manager
startup script is described in “Starting in a Clean State” on page 2-14.
3-19

3 Programming a Distributed Application

3-2
Programming Tips
This section provides programming tips that might enhance your program
performance.

Saving Objects
Do not use the save or load functions on Distributed Computing Toolbox
objects. Some of the information that these objects require is stored in the
MATLAB session persistent memory and would not be saved to a file.

Running Tasks That Call Simulink
The first task that runs on a worker session that uses Simulink can take a long
time to run, as Simulink is not automatically started at the beginning of the
worker session. Instead, Simulink starts up when first called. Subsequent
tasks on that worker session will run faster, unless the worker is restarted
between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX machines, pause(inf)
returns immediately, rather than pausing. This is to prevent a worker session
from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks.

Data Size Limit on Object Properties
The size of data that can be sent in any one setting of object properties is
approximately 50 MB, due to the size of the heap allocated to the Java Virtual
Machine (JVM) in a MATLAB session.
0

Programming Tips
Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C in the client session to interrupt them. To control or interrupt the
execution of jobs and tasks, use such functions as cancel, destroy, demote,
promote, pause, and resume.
3-21

3 Programming a Distributed Application

3-2
2

4

Function Reference

This chapter describes the Distributed Computing Toolbox M-file functions that you use directly to
evaluate MATLAB code in a cluster of computers.

Functions — Categorical
List (p. 4-2)

Contains a series of tables that group functions by category

Functions — Alphabetical
List (p. 4-5)

Lists all the functions alphabetically

4 Function Reference

4-2
Functions — Categorical List
This section contains descriptions of all the Distributed Computing Toolbox
commands and functions.

General Functions

General Functions Distributed Computing Toolbox functions not
specific to a particular object type

Job Manager Functions Functions that operate on a job manager object

Job Functions Functions that operate on a job object

Task Functions Functions that operate on a task object

clear Remove objects from MATLAB workspace

dctconfig Configure settings for Distributed Computing
Toolbox client session

dfeval Evaluate function using a cluster of computers

dfevalasync Evaluate function asynchronously using a cluster
of computer

findResource Find available distributed computing resources

get Return object properties

getCurrentJob Get job object whose task is currently being
evaluated by this worker session

getCurrentJobmanager Get job manager object that sent current task to
this worker session

getCurrentTask Get task object currently being evaluated in this
worker session

getCurrentWorker Get worker object currently running this session

help Display help for toolbox functions in Command
Window

inspect Open Property Inspector

Functions — Categorical List
Job Manager Functions

Job Functions

jobStartup Job startup M-file for user-defined options

length Return length of object array

methods List functions of object class

set Configure or display object properties

size Return size of object array

taskFinish Task finish M-file for user-defined options

taskStartup Task startup M-file for user-defined options

createJob Create job object

findJob Find job objects stored in job queue

pause Pause job manager queue

resume Resume processing queue in job manager

cancel Cancel a pending, queued, or running job

createTask Create new task in job

demote Demote job in job queue

destroy Remove job object from a job manager and memory

findTask Get task objects belonging to job object

getAllOutputArguments Retrieve output arguments from all tasks
evaluated in job object

promote Promote job in job queue

submit Queue job in job queue service

waitForState Wait for job object to change state
4-3

4 Function Reference

4-4
Task Functions
cancel Cancel a pending or running task

destroy Remove task object from job and from memory

waitForState Wait for task object to change state

Functions — Alphabetical List
Functions — Alphabetical List
This section contains detailed descriptions of the Distributed Computing
Toolbox functions. Each function reference page contains some or all of the
following information:

• The function name

• The function purpose

• The function syntax

Valid input argument and output argument combinations are shown. In
some cases, an ellipsis (. . .) is used for the input arguments. This means that
all preceding input argument combinations are valid for the specified output
argument(s).

• A description of each argument

• A description of each function syntax

• Additional remarks about usage

• An example of usage

• Related functions and properties
4-5

cancel
4cancelPurpose Cancel a pending or running task, or cancel a pending, queued, or running job

Syntax cancel(t)
cancel(j)

Arguments

Description cancel(t) stops the task object, t, that is currently in the pending or running
state. The task’s State property is set to finished, and no output arguments
are returned. An error message stating that the task was canceled is placed in
the task object’s ErrorMessage property, and the worker session running the
task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running. The job’s
State property is set to finished, and a cancel is executed on all tasks in the
job that are not in the finished state. A job object that has been canceled
cannot be started again.

If the job is running in a job manager, any worker sessions that are evaluating
tasks belonging to the job object will be restarted.

Example Cancel a task. Note afterward the tasks State, ErrorMessage, and
OutputArguments properties.

job1 = createJob(jm);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)
get(t)
 ID: 1
 Function: @rand
 NumberOfOutputArguments: 1
 InputArguments: {[3] [3]}
 OutputArguments: {1x0 cell}
 CaptureCommandWindowOutput: 0
 CommandWindowOutput: ''
 State: 'finished'
 ErrorMessage: 'Task cancelled by user'
 ErrorIdentifier: 'dce:task:cancelled'

t Pending or running task to cancel.

j Pending, running, or queued job to cancel.
4-6

cancel
 Timeout: Inf
 CreateTime: 'Fri Oct 22 11:38:39 EDT 2004'
 StartTime: 'Fri Oct 22 11:38:46 EDT 2004'
 FinishTime: 'Fri Oct 22 11:38:46 EDT 2004'
 Worker: []
 Parent: [1x1 distcomp.job]
 UserData: []
 RunningFcn: []
 FinishedFcn: []

See Also destroy, submit
4-7

clear
4clearPurpose Remove objects from MATLAB workspace

Syntax clear obj

Arguments

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj references an object in the job manager, it is cleared from the workspace,
but it remains in the job manager. You can restore obj to the workspace with
the findResource, findJob, or findTask function; or with the Jobs or Tasks
property.

Example This example creates two job objects on the job manager jm. The variables for
these job objects in the MATLAB workspace are job1 and job2. job1 is copied
to a new variable, job1copy; then job1 and job2 are cleared from the MATLAB
workspace. The job objects are then restored to the workspace from the job
object’s Jobs property as j1 and j2, and the first job in the job manager is
shown to be identical to job1copy, while the second job is not.

job1 = createJob(jm);
job2 = createJob(jm);
job1copy = job1;
clear job1 job2;
j1 = jm.Jobs(1);
j2 = jm.Jobs(2);
isequal (job1copy, j1)
ans =
 1
isequal (job1copy, j2)
ans =
 0

See Also createJob, createTask, findJob, findResource, findTask

obj An object or an array of objects.
4-8

createJob
4createJobPurpose Create job object in job manager

Syntax obj = createJob(jobmanager)
obj = createJob(..., 'p1', v1, 'p2', v2, ...)

Arguments

Description obj = createJob(jobmanager) creates a job object at the specified remote
location.

obj = createJob(..., 'p1', v1, 'p2', v2, ...) creates a job object with
the specified property values. If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are job object property
names and the field values specify the property values.

Example Construct a job object.

jm = findResource('jobmanager');
obj = createJob(jm, 'Name', 'testjob');

Add tasks to the job.

for i = 1:10
 createTask(obj, @rand, 1, {10});
end

Run the job.

submit(obj);

Retrieve job results.

obj The job object.

jobmanager The job manger object representing the job manager
service that will execute the job.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.
4-9

createJob
out = getAllOutputArguments(obj);

Display the random matrix.

disp(out{1}{1});

Destroy the job.

destroy(obj);

See Also createTask, findJob, submit
4-10

createTask
4createTaskPurpose Create new task in job

Syntax obj = createTask(j, functionhandle, numoutputargs, inputargs)
obj = createTask(..., 'p1',v1,'p2',v2, ...)

Arguments

Description obj = createTask(j, functionhandle, numoutputargs, inputargs)
creates a new task object in job j, and returns a reference, obj, to the added
task object.

obj = createTask(..., 'p1',v1,'p2',v2, ...) adds a task object with the
specified property values. If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are task object property
names and the field values specify the property values.

Example Create a job object.

jm = findResource('jobmanager');
j = createJob(jm);

Add a task object to be evaluated that generates a 10-by-10 random matrix.

j The job that the task object is created in.

functionhandle A handle to the function that is called when the task is
evaluated.

numoutputargs The number of output arguments to be returned from
execution of the task function.

inputargs A row cell array specifying the input arguments to be
passed to the function functionhandle. Each element in
the cell array will be passed as a separate input
argument.

p1, p2 Task object properties configured at object creation.

v1, v2 Initial values for corresponding task object properties.
4-11

createTask
obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Get the output from the task evaluation.

taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

See Also createJob
4-12

dctconfig
4dctconfigPurpose Configure settings for Distributed Computing Toolbox client session

Syntax dctconfig('p1', v1, ...)
config = dctconfig('p1', v1, ...)

Arguments

Description dctconfig('p1', v1, ...) sets the client configuration property p1 with the
value v1.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are the property names
and the field values specify the property values.

The only property supported in this release is 'port'. The specified value is
used to set the port for the client session of the Distributed Computing Toolbox.
This is useful in environments where the choice of ports is limited. By default,
the client session uses an anonymous port to communicate with the other
sessions of the MATLAB Distributed Computing Engine. In networks where
you are required to use specific ports, you use dctconfig to set the client’s port.

config = dctconfig('p1', v1, ...) returns a structure to config. The field
names of the structure reflect the property names, while the field values are set
to the property values.

Example Set the current client session port number to 21000.

dctconfig('port', 21000);

p1 Property to configure.

v1 Value for corresponding property.

config Structure of configuration value.
4-13

demote
4demotePurpose Demote job in job queue

Syntax demote(obj)

Arguments

Description demote(obj) demotes the job object obj that is queued in a job queue.

If obj is not the last job in the queue, demote exchanges the position of obj and
the job that follows it in the queue.

See Also createJob, findJob, promote, submit

obj Job object demoted in the job queue.
4-14

destroy
4destroyPurpose Remove job or task object from its parent and from memory

Syntax destroy(obj)

Arguments

Description destroy(obj) removes the job object reference or task object reference obj
from the local session, and removes the object from the job manager memory.
When obj is destroyed, it becomes an invalid object. You can remove an invalid
object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying one
reference to that object invalidates all the remaining references to it. You
should remove these remaining references from the workspace with the clear
command.

The task objects contained in a job will also be destroyed when a job object is
destroyed. This means that any references to those task objects will also be
invalid.

Remarks Because its data is lost when you destroy an object, destroy should be used
after output data has been retrieved from a job object.

Example Destroy a job and its tasks.

jm = findResource('jobmanager');
j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

See Also createJob, createTask

obj Job or task object deleted from memory.
4-15

dfeval
4dfevalPurpose Evaluate function using a cluster of computers

Syntax [y1,...,ym] = dfeval(F, x1,...,xn)
[y1,...,ym] = dfeval(F, x1,...,xn, 'P1', V1, 'P2', V2,...)

Arguments

Description [y1,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of an feval
in a cluster of machines using the Distributed Computing Toolbox. dfeval
evaluates the function F, with arguments provided in the cell arrays
x1,...,xn. F can be a function handle, a function name, or a cell array of
function handles/function names where the length of the cell array is equal to
the number of tasks to be executed. x1,...,xn are the inputs to the function F,
specified as cell arrays in which the number of elements in the cell array equals
the number of tasks to be executed. The first task evaluates function F using
the first element of each cell array as input arguments; the second task uses
the second element of each cell array, and so on. The sizes of x1,...,xn must
all be the same.

The results are returned to y1,..,ym, which are column-based cell arrays, each
of whose elements corresponds to each task that was created. The number of
cell arrays (m) is equal to the number of output arguments returned from each
task. For example, if the job has 10 tasks that each generate three output
arguments, the results of dfeval will be three cell arrays of 10 elements each.

y = dfeval(..., 'P1', V1, 'P2', V2,...) accepts additional arguments
for configuring different properties associated with the job. Valid properties
and property values are

F Function name, function handle, or cell array of function
names or handles.

x1,...,xn Cell arrays of input arguments to the functions.

y1,...,ym Cell arrays of output arguments; each element of a cell
array corresponds to each task of the job.

'P1', V1,
'P2', V2,...

Property name/property value pairs for the created job
object; can be name/value pairs or structures.
4-16

dfeval
• Job object property value pairs, specified as name/value pairs or structures.
(Properties of other object types, such as job manager, task, or worker objects
are not permitted.)

• 'JobManager','JobManagerName'. This specifies the job manager on which
to run the job. If you do not use this property to specify a job manager, the
default is to run the job on the first job manager returned by findResource.

• 'LookupURL','host:port'. This makes a unicast call to the job manager
lookup service at the specified host and port. The job managers available for
this job are those accessible from this lookup service. For more detail, see the
description of this option on the findResource reference page.

• 'StopOnError',true|{false}. You may also set the value to logical 1 (true)
or 0 (false). If true (1), any error that occurs during execution in the cluster
will cause the job to stop executing. The default value is 0 (false), which
means that any errors that occur will produce a warning but will not stop
function execution.

Example Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random matrix.

y = dfeval(@rand,{1 2 3})
y =
 [0.9501]
 [2x2 double]
 [3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand,{2 1},{3 4});
y{1}
ans =
 0.8132 0.1389 0.1987
 0.0099 0.2028 0.6038
y{2}
ans =
 0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array and the
second task creates a 3-by-4 array of zeros.
4-17

dfeval
y = dfeval({@rand @zeros},{1 3},{2 4});
y{1}
ans =
 0.0579 0.3529
y{2}
ans =
 0 0 0 0
 0 0 0 0
 0 0 0 0

Create five random 2-by-4 matrices using MyJobManager to execute tasks,
where the tasks time out after 10 seconds, and the function will stop if an error
occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4}, ...
'JobManager','MyJobManager','Timeout',10,'StopOnError',true);

See Also dfevalasync, feval, findResource
4-18

dfevalasync
4dfevalasyncPurpose Evaluate function asynchronously using a cluster of computers

Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1', V1, 'P2', V2,...)

Arguments

Description Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1', V1, 'P2', V2,...)
is equivalent to dfeval, except it returns immediately with a single output
argument containing the job object that has been created and sent to the
cluster.

Remarks When the job is finished, you can obtain the results associated with the job by
executing the command

data = getAllOutputArguments(Job)

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval, feval

Job Job object created to evaluation the function.

F Function name, function handle, or cell array of function
names or handles.

numArgOut Number of output arguments from each task’s execution
of function F.

x1,...,xn Cell arrays of input arguments to the functions.

'P1', V1,
'P2', V2,...

Property name/property value pairs for the created job
object; can be name/value pairs or structures.
4-19

findJob
4findJobPurpose Find job objects stored in job manager

Syntax out = findJob(jm)
[pending queued running finished] = findJob(jm)
out = findJob(jm, 'p1', v1, 'p2', v2,...)

Arguments

Description out = findJob(jm) returns an array, out, of all job objects stored in the job
manager jm. Jobs in the array will be ordered by State in the following order:
'pending', 'queued', 'running', 'finished'; within the 'queued' state, jobs
are listed in the order in which they are queued.

[pending queued running finished] = findJob(jm) returns arrays of all
job objects stored in the job manager jm, by state. Jobs in the array queued will
be in the order in which they are queued, with the job at queued(1) being the
next to execute.

out = findJob(jm, 'p1', v1, 'p2', v2,...) returns an array, out, of job
objects whose property names and property values match those passed as
parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are job object property
names and the field values are the appropriate property values to match.

jm Job manager object in which to find the job.

pending Array of jobs in job manager jm whose State is pending.

queued Array of jobs in job manager jm whose State is queued.

running Array of jobs in job manager jm whose State is running.

finished Array of jobs in job manager jm whose State is finished.

out Array of jobs found in job manager jm.

p1, p2 Job object properties to match.

v1, v2 Values for corresponding object properties.
4-20

findJob
Jobs in the queued state are returned in the same order as they appear in the
job queue service.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as MyJob, then findJob will not find that object while searching
for a Name property value of myjob.

See Also createJob, findResource, findTask, submit
4-21

findResource
4findResourcePurpose Find available MATLAB Distributed Computing Engine resources

Syntax out = findResource('type')
out = findResource('type','LookupURL','host:port', ...)
out = findResource('type', 'p1', v1, 'p2', v2,...)

Arguments

Description out = findResource('type') returns an array, out, containing objects
representing all available distributed computing resources of the given type.
Acceptable types include 'jobmanager' and 'worker'.

out = findResource('type','LookupURL','host:port') uses the lookup
service of the job manager running at a specific location. The lookup service is
part of a job manager. By default, findResource uses all the lookup services
that are available to the local machine via multicast. If you specify
'LookupURL' with a host and port, findResource uses the lookup service of the
job manager running at that location. This URL is not necessarily the host
running the job manager or worker session that this call to findResource
returns, it is only where the lookup is performed from. This unicast call is
useful when you want to find resources that might not be available via
multicast or in a network that doesn’t support multicast. For more information
about which ports these services use, see “Setting TCP Ports” on page 2-17.

out = findResource('type','p1', v1, 'p2', v2,...) returns an array,
out, of resources of the given type whose property names and property values
match those passed as parameter-value pairs, p1, v1, p2, v2.

'type' Type of resource to find: 'jobmanager' or 'worker'.

out Object or array of objects returned.

'LookupURL' Literal string to indicate usage of a remote lookup
service.

'host:port' Host (IP address or host name) and port of remote
lookup service to use.

p1, p2 Object properties to match.

v1, v2 Values for corresponding object properties.
4-22

findResource
Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are object property
names and the field values are the appropriate property values to match.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as MyJobManager, then findResource will not find that object if
searching for a Name property value of myjobmanager.

Remarks Note that it is permissible to use parameter-value string pairs, structures, and
parameter-value cell array pairs in the same call to findResource.

Example Find particular job managers.

jm1 = findResource('jobmanager', 'Name', 'ClusterQueue1');
jm2 = findResource('jobmanager', 'Name', 'ClusterQueue2');

Find all job managers. In this example, there are four.

all_job_managers = findResource('jobmanager')
all_job_managers =
 distcomp.jobmanager: 1-by-4

Find all job managers accessible from the lookup service on a particular host.

jms = findResource('jobmanager','LookupURL','123.123.1.1:6789');

Find a particular job manager accessible from the lookup service on a
particular host. In this example, subnet2.host_alpha port 6789 is where the
lookup is performed, but the job manager named SN2Jmgr might be running on
another machine.

jm = findResource('jobmanager', ...
'LookupURL', 'subnet2.host_alpha:6789', 'Name', 'SN2JMgr');

See Also findJob, findTask
4-23

findTask
4findTaskPurpose Get task objects belonging to job object

Syntax tasks = findTask(obj)
[pending running finished] = findTask(obj)
tasks = findTask(obj, 'p1', v1, 'p2', v2, ...)

Arguments

Description tasks = findTask(obj) gets a 1-by-N array of task objects belonging to a job
object obj.

[pending running finished] = findTask(obj) returns arrays of all task
objects stored in the job object obj, sorted by state.

tasks = findTask(obj, 'p1', v1, 'p2', v2, ...) gets a 1-by-N array of
task objects belonging to a job object obj. The returned task objects will be only
those having the specified property-value pairs.

Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs. If a structure is used, the structure field names are object property
names and the field values are the appropriate property values to match.

When a property value is specified, it must use the same exact value that the
get function returns, including letter case. For example, if get returns the Name
property value as MyTask, then findTask will not find that object while
searching for a Name property value of mytask.

obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is pending.

running Array of tasks in job obj whose State is running.

finished Array of tasks in job obj whose State is finished.

p1, p2 Task object properties to match.

v1, v2 Values for corresponding object properties.
4-24

findTask
Remarks If obj is contained in a remote service, findTask will result in a call to the
remote service. This could result in findTask taking a long time to complete,
depending on the number of tasks retrieved and the network speed. Also, if the
remote service is no longer available, an error will be thrown.

Example Create a job object.

jm = findResource('jobmanager');
obj = createJob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

See Also createJob, createTask, findJob
4-25

get
4getPurpose Return object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments

Description get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of objects, then out will be
an m-by-n cell array of property values where m is equal to the length of obj
and n is equal to the number of properties specified.

Remarks When specifying a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if jm is a job
manager object, then these commands are all valid and return the same result.

out = get(jm,'HostAddress');
out = get(jm,'hostaddress');
out = get(jm,'HostAddr');

obj An object or an array of objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property values,
or a cell array of property values.
4-26

get
Example This example illustrates some of the ways you can use get to return property
values for the job object j1.

get(j1,'State')
ans =
pending

get(j1,'Name')
ans =
MyJobManager_job

out = get(j1);
out.State
ans =
pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)
ans =
 'pending' 'MyJobManager_job'

See Also inspect, set
4-27

getAllOutputArguments
4getAllOutputArgumentsPurpose Retrieve output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments

Description data = getAllOutputArguments(obj) returns data, the output data
contained in the tasks of a finished job. If the job has M tasks, each row of the
M-by-N cell array data contains the output arguments for the corresponding
task in the job. Each row has N columns, where N is the greatest number of
output arguments from any one task in the job. The N elements of a row are
arrays containing the output arguments from that task. If a task has less than
N output arguments, the excess arrays in the row for that task are empty. The
order of the rows in data will be the same as the order of the tasks contained
in the job.

Remarks Because getAllOutputArguments results in a call to a remote service, it could
take a long time to complete, depending on the amount of data being retrieved
and the network speed. Also, if the remote service is no longer available, an
error will be thrown.

Note that issuing a call to getAllOutputArguments will not remove the output
data from the location where it is stored. To remove the output data, use the
destroy function to remove the individual task or their parent job object.

The same information returned by getAllOutputArguments can be obtained by
accessing the OutputArguments property of each task in the job.

Example Create a job to generate a random matrix.

jm = findResource('jobmanager');
j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);
data = getAllOutputArguments(j);

obj Job object whose tasks generate output arguments.

data M-by-N cell array of job results.
4-28

getAllOutputArguments
Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit
4-29

getCurrentJob
4getCurrentJobPurpose Get job object whose task is currently being evaluated by this worker session

Syntax job = getCurrentJob

Arguments

Description job = getCurrentJob returns the job object that is the Parent of the task
currently being evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

See Also getCurrentJobmanager, getCurrentTask, getCurrentWorker

job The job object that contains the task currently being
evaluated by the worker session.
4-30

getCurrentJobmanager
4getCurrentJobmanagerPurpose Get job manager object that sent current task to this worker session

Syntax jm = getCurrentJobmanager

Arguments

Description jm = getCurrentJobmanager returns the job manager object that has sent the
task currently being evaluated by the worker session. jm is the Parent of the
task’s parent job.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

See Also getCurrentJob, getCurrentTask, getCurrentWorker

jm The job manager object that distributed the task
currently being evaluated by the worker session.
4-31

getCurrentTask
4getCurrentTaskPurpose Get task object currently being evaluated in this worker session

Syntax task = getCurrentTask

Arguments

Description task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

See Also getCurrentJob, getCurrentJobmanager, getCurrentWorker

task The task object that the worker session is currently
evaluating.
4-32

getCurrentWorker
4getCurrentWorkerPurpose Get worker object currently running this session

Syntax worker = getCurrentWorker

Arguments

Description worker = getCurrentWorker returns the worker object representing the
session that is currently evaluating the task that calls this function.

Remarks If the function is executed in a MATLAB session that is not a worker, you get
an empty result.

Example Create a job with one task, and have the task return the name of the worker
that evaluates it.

jm = findResource('jobmanager','Name','MyJobManager')
j = createJob(jm);
t = createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t,'OutputArgument')
ans =
 'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is evaluating
the task. Then the task function uses get to examine the Name property value
of that object. The result is placed in the OutputArgument property of the task.

See Also getCurrentJob, getCurrentJobmanager, getCurrentTask

worker The worker object that is currently evaluating the task
that contains this function.
4-33

help
4helpPurpose Display help for toolbox functions in Command Window

Syntax help class/function

Arguments

Description help class/function returns command-line help for the specified function of
the given class.

If you do not know the class for the function, use class(obj), where function
is of the same class as the object obj.

Example Get help on functions from each of the Distributed Computing Toolbox object
classes.

help distcomp.jobmanager/createJob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =
distcomp.job
help distcomp.job/createTask

See Also methods

class A Distributed Computing Toolbox object class:
distcomp.jobmanager, distcomp.job, or distcomp.task.

function A function for the specified class. To see what functions are
available for a class, see the methods reference page.
4-34

inspect
4inspectPurpose Open Property Inspector

Syntax inspect(obj)

Arguments

Description inspect(obj) opens the Property Inspector and allows you to inspect and set
properties for the object obj.

Remarks You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To refresh
the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In the figure of
the example below, the Tasks property is expanded to enumerate the
individual task objects that make up this property. These individual task
objects can also be expanded to display their own properties.

Example Open the Property Inspector for the job object j1.

inspect(j1)

See Also get, set

obj An object or an array of objects.
4-35

jobStartup
4jobStartupPurpose Job startup M-file for user-defined options

Syntax jobStartup(job)

Arguments

Description jobStartup(job) runs automatically on a worker the first time the worker
evaluates a task for a particular job. You do not call this function from the
client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/jobStartup.m

You add M-code to the file to define job initialization actions to be performed on
the worker when it first evaluates a task for this job.

Alternatively, you can create a file called jobStartup.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed jobStartup.m file.

See Also Functions
taskFinish, taskStartup

Properties
FileDependencies

job The job for which this startup is being executed.
4-36

length
4lengthPurpose Return length of object array

Syntax length(obj)

Arguments

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Example Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =
 9

See Also size

obj An object or an array of objects.
4-37

methods
4methodsPurpose List functions of object class

Syntax methods(obj)
out = methods(obj)

Arguments

Description methods(obj) returns the names of all methods for the class of which obj is an
instance.

out = methods(obj) returns the names of the methods as a cell array of
strings.

Example Create job manager, job, and task objects, and examine what methods are
available for each.

jm = findResource('jobmanager','name','MyJobManager');
methods(jm)
Methods for class distcomp.jobmanager:
createJob findJob pause resume

j1 = createJob(jm);
methods(j1)
Methods for class distcomp.job:
cancel destroy promote
createTask findTask submit
demote getAllOutputArguments waitForState

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
Methods for class distcomp.task:
cancel destroy waitForState

See Also help

obj An object or an array of objects.

out Cell array of strings.
4-38

pause
4pausePurpose Pause job manager queue

Syntax pause(jm)

Arguments

Description pause(jm) pauses the job manager’s queue so that jobs waiting in the queued
state will not be run. Jobs that are already running will continue to run. This
call will do nothing if the job manager is already paused.

See Also resume, waitForState

jm Job manager object whose queue is paused.
4-39

promote
4promotePurpose Promote job in job queue

Syntax promote(obj)

Arguments

Description promote(obj) promotes the job object obj, that is queued in a job queue.

If the job object is not the first job in the queue, the position of obj and the
previous job object are exchanged.

See Also createJob, demote, findJob, submit

obj Job object promoted in the queue.
4-40

resume
4resumePurpose Resume processing queue in job manager

Syntax resume(jm)

Arguments

Description resume(jm) resumes processing of the job manager's queue so that jobs waiting
in the queued state will be run. This call will do nothing if the job manager is
not paused.

See Also pause, waitForState

jm Job manager object whose queue is resumed.
4-41

set
4setPurpose Configure or display object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments

Description set(obj) displays all configurable properties for obj. If a property has a finite
list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible property
values. If a property does not have a finite set of possible values, its cell array
is empty.

set(obj,'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

obj An object or an array of objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the property
names for obj.

S A structure with property names and property values.
4-42

set
set(obj,'PropertyName',PropertyValue,...) configures one or more
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n, where m is equal to the number of objects in obj and n is equal to
the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are object properties, and whose field values
are the values for the corresponding properties.

Remarks You can use any combination of property name/property value pairs, structure
arrays, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if j1 is a job object, the following commands are all
valid and have the same result.

set(j1,'Timeout',20)
set(j1,'timeout',20)
set(j1,'timeo',20)

Examples This example illustrates some of the ways you can use set to configure property
values for the job object j1.

set(j1,'Name','Job_PT109','Timeout',60);

props1 = {'Name' 'Timeout'};
values1 = {'Job_PT109' 60};
set(j1, props1, values1);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get, inspect
4-43

size
4sizePurpose Return size of object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

Arguments

Description d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

See Also length

obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension
specified by dim.

n The number of columns in obj.

m1,m2,...,
mn

The lengths of the first n dimensions of obj.
4-44

submit
4submitPurpose Queue job in job queue service

Syntax submit(obj)

Arguments

Description submit(obj) queues the job object, obj, in the job manager resource. The
resource where a job queue resides was determined when the job was created.

Remarks When a job contained in a job manager is submitted, the job’s State property
is set to queued, and the job is added to the list of jobs waiting to be executed
by the job queue service.

The jobs in the waiting list are executed in a first in, first out manner; that is,
the order in which they were submitted, except when the sequence is altered
by promote, demote, cancel, or destroy.

Example Find a job manager service named jobmanager1.

jm1 = findResource('jobmanager', 'Name', 'jobmanager1');

Create a job object.

j1 = createJob(jm1);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

See Also createJob, findJob

obj Job object to be queued.
4-45

taskFinish
4taskFinishPurpose Task finish M-file for user-defined options

Syntax taskFinish(task)

Arguments

Description taskFinish(task) runs automatically on a worker each time the worker
finishes evaluating a task for a particular job. You do not call this function from
the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/taskFinish.m

You add M-code to the file to define task finalization actions to be performed on
the worker every time it finishes evaluating a task for this job.

Alternatively, you can create a file called taskFinish.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed taskFinish.m file.

See Also Functions
jobStartup, taskStartup

Properties
FileDependencies

task The task being evaluated by the worker.
4-46

taskStartup
4taskStartupPurpose Task startup M-file for user-defined options

Syntax taskStartup(task)

Arguments

Description taskStartup(task) runs automatically on a worker each time the worker
evaluates a task for a particular job. You do not call this function from the
client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

MATLABROOT/toolbox/distcomp/user/taskStartup.m

You add M-code to the file to define task initialization actions to be performed
on the worker every time it evaluates a task for this job.

Alternatively, you can create a file called taskStartup.m and include it as part
of the job’s FileDependencies property. The version of the file in
FileDependencies takes precedence over the version in the worker’s MATLAB
installation.

For further detail, see the text in the installed taskStartup.m file.

See Also Functions
jobStartup, taskFinish

Properties
FileDependencies

task The task being evaluated by the worker.
4-47

waitForState
4waitForStatePurpose Wait for object to change state

Syntax waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)

Arguments

Description waitForState(obj) blocks execution in the client session until the job or task
identified by the object obj reaches the 'finished' state. For a job object, this
occurs when all its tasks are finished processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session until the
specified object changes state to the value of 'state'. For a job object, the
valid states to wait for are 'queued', 'running', and 'finished'. For a task
object, the valid states are 'running' and 'finished'.

If the object is currently or has already been in the specified state, a wait is not
performed and execution returns immediately. For example, if you execute
waitForState(job, 'queued') for job already in the 'finished' state, the call
returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either the
object reaches the specified 'state', or timeout seconds elapse, whichever
happens first.

Example Submit a job to the queue, and wait for it to finish running before retrieving its
results.

submit(job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

See Also pause, resume

obj Job or task object whose change in state to wait for.

'state' Value of the object’s State property to wait for.

timeout Maximum time to wait, in seconds.
4-48

5

Property Reference

This chapter describes the Distributed Computing Toolbox object properties in detail.

Properties — Categorical
List (p. 5-2)

Contains a series of tables that group properties by category

Properties — Alphabetical
List (p. 5-6)

Lists all the properties alphabetically

5 Property Reference

5-2
Properties — Categorical List
This section contains descriptions of all toolbox properties.

Job Manager Properties

Job Manager Properties Properties of job manager objects

Job Properties Properties of job objects

Task Properties Properties of task objects

Worker Properties Properties of worker objects

BusyWorkers Indicate workers currently running tasks

HostAddress Indicate IP address of host machine running
job manager

HostName Indicate name of host machine running job
manager

IdleWorkers Indicate which workers are idle and
available to run tasks

Jobs Indicate jobs contained in job manager

Name Indicate name of job manager

NumberOfBusyWorkers Indicate number of workers currently
running tasks

NumberOfIdleWorkers Indicate number of workers available to run
tasks

State Indicate current state of job manager

Properties — Categorical List
Job Properties
CreateTime Indicate when job was created

FileDependencies Indicate directories and files that worker can
access

FinishedFcn Specify callback to execute when job finishes
running

FinishTime Indicate when job finished

ID Indicate object identifier

JobData Indicate data made available to all workers
for job’s tasks

MaximumNumberOfWorkers Specify maximum number of workers to
perform tasks of a job

MinimumNumberOfWorkers Specify minimum number of workers to
perform tasks of a job

Name Specify name for job object

Parent Indicate parent job manager object of job

QueuedFcn Specify M-file function to execute when job is
added to queue

RestartWorker Specify whether to restart MATLAB on
worker before it evaluates task

RunningFcn Specify M-file function to execute when job or
task starts running

StartTime Indicate when job started running

State Indicate current state of job object

SubmitTime Indicate when job was submitted to job queue

Tag Specify label to associate with job object

Tasks Indicate tasks contained in job object

Timeout Specify time limit for completion of job
5-3

5 Property Reference

5-4
Task Properties

UserData Specify data to associate with job object

UserName Indicate user who created job

CaptureCommandWindowOutput Specify whether to return command window
output

CommandWindowOutput Indicate text produced by execution of task
object’s function

CreateTime Indicate when task was created

ErrorIdentifier Indicate task error identifier

ErrorMessage Indicate output message from task error

FinishedFcn Specify callback to execute when task finishes
running

FinishTime Indicate when task finished

Function Indicate function called when evaluating task

ID Indicate object identifier

InputArguments Indicate input arguments to task object

NumberOfOutputArguments Indicate number of arguments returned by
task function

OutputArguments Data returned from the execution of task

Parent Indicate parent job object of task

RunningFcn Specify M-file function to execute when job or
task starts running

State Indicate current state of task object

StartTime Indicate when task started running

Timeout Specify time limit for completion of task

UserData Specify data to associate with task object

Worker Indicate worker session that performed task

Properties — Categorical List
Worker Properties
CurrentJob Indicate job whose task the worker is

currently running

CurrentTask Indicate task that worker is currently running

HostAddress Indicate IP address of host machine running
worker session

HostName Indicate name of host machine running
worker session

Name Indicate name of worker object

PreviousJob Indicate job whose task the worker previously
ran

PreviousTask Indicate task that worker previously ran
5-5

5 Property Reference

5-6
Properties — Alphabetical List
This section contains detailed descriptions of the Distributed Computing
Toolbox object properties. Each property reference page contains some or all of
the following information:

• The property name

• A description of the property

• The property characteristics, including

- Usage — the object(s) the property is associated with

- Read-only — the condition under which the property is read-only

A property can be read-only always, never, or depending on the state of the
object. You can configure a property value using the set command or dot
notation. You can return the current property value using the get
command or dot notation.

- Data type — the property data type

This is the data type you use when specifying a property value

• Valid property values including the default value

When property values are given by a predefined list, the default value is
usually indicated by {} (curly braces).

• An example using the property

• Related properties and functions

BusyWorkers
5BusyWorkersPurpose Indicate workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics

Values As workers complete tasks and assume new ones, the lists of workers in
BusyWorkers and IdleWorkers can change rapidly. If you examine these two
properties at different times, you might see the same worker on both lists if
that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a busy
or idle worker does not get updated until the job manager runs the next job and
tries to send a task to that worker.

Example Examine the workers currently running tasks for a job manager.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties
IdleWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Array of worker objects
5-7

CaptureCommandWindowOutput
5CaptureCommandWindowOutputPurpose Specify whether to return command window output

Description CaptureCommandWindowOutput specifies whether to return command window
output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of the task
object. If the value is set false (or logical 0), the task does not retain command
window output.

Characteristics

Values The value of CaptureCommandWindowOutput can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value returned
is logical 1 or logical 0. The default value is logical 0 to save network bandwidth
in situations where the output is not needed.

Example Set all tasks in a job to retain any command window output generated during
task evaluation.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)

See Also Properties
Function, CommandWindowOutput

Usage Task object

Read-only While task is running or finished

Data type Logical
5-8

CommandWindowOutput
5CommandWindowOutputPurpose Indicate text produced by execution of task object’s function

Description CommandWindowOutput contains the text produced during the execution of a
task object’s Function property that would normally be printed to the
MATLAB Command Window.

For example, if the function specified in the Function property makes calls to
the disp command, the output that would normally be printed to the Command
Window on the worker is captured in the CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified using the
CaptureCommandWindowOutput property. The CaptureCommandWindowOutput
property by default is logical 0 to save network bandwidth in situations when
the CommandWindowOutput is not needed.

Characteristics

Values Before a task is evaluated, the default value of CommandWindowOutput is an
empty string.

Example Get the Command Window output from all tasks in a job.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowOutput', true)
submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties
Function, CaptureCommandWindowOutput

Usage Task object

Read-only Always

Data type String
5-9

CreateTime
5CreateTimePurpose Indicate when task or job was created

Description CreateTime holds a date number specifying the time when a task or job was
created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values CreateTime is assigned the job manager’s system time when a task or job is
created.

Example Create a job, then get its CreateTime.

jm = findResource('jobmanager', 'Name',' MyJobManager');
j = createJob(jm);
get(j,'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions
createJob, createTask

Properties
FinishTime, StartTime, SubmitTime

Usage Task object or job object

Read-only Always

Data type String
5-10

CurrentJob
5CurrentJobPurpose Indicate job whose task the worker is currently running

Description CurrentJob indicates the job whose task the worker is evaluating at the
present time.

Characteristics

Values CurrentJob is an empty vector while the worker is not evaluating a task.

See Also Properties
CurrentTask, PreviousJob, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Job object
5-11

CurrentTask
5CurrentTaskPurpose Indicate task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the present
time.

Characteristics

Values CurrentTask is an empty vector while the worker is not evaluating a task.

See Also Properties
CurrentJob, PreviousJob, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Task object
5-12

ErrorIdentifier
5ErrorIdentifierPurpose Indicate task error identifier

Description ErrorIdentifier contains the identifier output from execution of the
lasterror command if an error occurs during the task evaluation.

Characteristics

Values ErrorIdentifier is empty before an attempt to run a task. ErrorIdentifier
remains empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an identifier.

See Also Properties
ErrorMessage, Function

Usage Task object

Read-only Always

Data type String
5-13

ErrorMessage
5ErrorMessagePurpose Indicate output message from task error

Description ErrorMessage contains the message output from execution of the lasterror
command if an error occurs during the task evaluation.

Characteristics

Values ErrorMessage is empty before an attempt to run a task. ErrorMessage remains
empty if the evaluation of a task object’s function does not produce an error.

Example Retrieve error message from task object.

jm = findResource('jobmanager', 'Name', 'MyJobManager')
j = createJob(jm);
a = [1 2 3 4]; %Note: matrix not square
t = createTask(j, @inv, 1, {a});
submit(j)
get(t,'ErrorMessage')
ans =
Error using ==> inv
Matrix must be square.

See Also Properties
ErrorIdentifier, Function

Usage Task object

Read-only Always

Data type String
5-14

FileDependencies
5FileDependenciesPurpose Indicate directories and files that worker can access

Description FileDependencies contains a list of directories and files that the worker will
need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the value for
the property as a cell array of strings. Each string is an absolute or relative
pathname to a directory or file. The toolbox makes a zip file of all the files and
directories referenced in the property, and stores it on the job manager
machine.

The first time a worker evaluates a task for a particular job, the job manager
passes to the worker the zip file of the files and directories in the
FileDependencies property. On the worker, the file is unzipped, and a
directory structure is created that is exactly the same as that accessed on the
client machine where the property was set. Those entries listed in the property
value are added to the path in the worker MATLAB session. (The
subdirectories of the entries are not added to the path, even though they are
included in the directory structure.)

When the worker runs subsequent tasks for the same job, it uses the directory
structure already set up by the job’s FileDependencies property for the first
task it ran for that job.

Characteristics

Values The value of FileDependencies is empty by default. If a pathname that does
not exist is specified for the property value, an error is generated.

Example Make available to a job’s workers the contents of the directories fd1 and fd2,
and the file fdfile1.m.

Usage Job object

Read-only After job is submitted

Data type Cell array of strings
5-15

FileDependencies
set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfile1.m'})
get(job1,'FileDependencies')
ans =
 'fd1'
 'fd2'
 'fdfile1.m'

See Also Functions
jobStartup, taskFinish, taskStartup
5-16

FinishedFcn
5FinishedFcnPurpose Specify callback to execute when task or job finishes running

Description The callback will be executed in the local MATLAB session, that is, the session
that sets the property.

Characteristics

Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for handle graphics, passing
to the callback function the object (job or task) that makes the call and an
empty argument of event data.

Example Set the FinishedFcn property for a job and its task, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('jobmanager', 'Name',' MyJobManager');
j = createJob(jm, 'Name', 'Job_52a')

set(j, 'FinishedFcn', ...
 @(job,eventdata) disp([job.Name ' ' job.State]));
createTask(j, @rand, 1, {2,4}, ...
 'FinishedFcn', @(task,eventdata) disp('Task completed'));

submit(j)
Task completed
Task completed
Task completed
Job_52a finished

See Also Properties
QueuedFcn, RunningFcn

Usage Task object or job object

Read-only Never

Data type Callback
5-17

FinishTime
5FinishTimePurpose Indicate when task or job finished

Description FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'.

If a task or job is stopped or is aborted due to an error condition, FinishTime
will hold the time when the task or job was stopped or aborted.

Characteristics

Values FinishTime is assigned the job manager’s system time when the task or job has
finished.

Example Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('jobmanager', 'Name',' MyJobManager');
j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j,'finished')
get(j,'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j,'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

See Also Functions
cancel, submit

Properties
CreateTime, StartTime, SubmitTime

Usage Task object or job object

Read-only Always

Data type String
5-18

Function
5FunctionPurpose Indicate function called when evaluating task

Description Function indicates the function performed in the evaluation of a task. You set
the function when you create the task using createTask.

Characteristics

See Also Functions
createTask

Properties
InputArguments, NumberOfOutputArguments, OutputArguments

Usage Task object

Read-only While task is running or finished

Data type String or function handle
5-19

HostAddress
5HostAddressPurpose Indicate IP address of host machine running job manager or worker session

Description HostAddress indicates the numerical IP address of the host machine running
the job manager or worker session to which the job manager object or worker
object refers. You can match the HostAddress property to find a desired job
manager or worker when creating an object with findResource.

Characteristics

Example Create a job manager object and examine its HostAddress property.

jm = findResource('jobmanager', 'Name', 'MyJobManager')
get(jm, 'HostAddress')
ans =
123.123.123.123

See Also Functions
findResource

Properties
HostName

Usage Job manager object or worker object

Read-only Always

Data type String
5-20

HostName
5HostNamePurpose Indicate name of host machine running job manager or worker session

Description You can match the HostName property to find a desired job manager or worker
when creating the job manager or worker object with findResource.

Characteristics

Example Create a job manager object and examine its HostName property.

jm = findResource('jobmanager', 'Name', 'MyJobManager')
get(jm, 'HostName')
ans =
JobMgrHost

See Also Functions
findResource

Properties
HostAddress

Usage Job manager object or worker object

Read-only Always

Data type String
5-21

ID
5IDPurpose Indicate object identifier

Description Each object has a unique identifier within its parent object. The ID value is
assigned at the time of object creation. You can use the ID property value to
distinguish one object from another, such as different tasks in the same job.

Characteristics

Values The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are assigned ID
values in numerical sequence as they are created after that.

Example Examine the ID property of different objects.

jm = findResource('jobmanager', 'Name', 'MyJobManager')
j = createJob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =
 [1]
 [2]

The ID values are the only unique properties distinguishing these two tasks.

See Also Functions
createJob, createTask

Properties
Jobs, Tasks

Usage Job object or task object

Read-only Always

Data type Double
5-22

IdleWorkers
5IdleWorkersPurpose Indicate which workers are idle and available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics

Values As workers complete tasks and assume new ones, the lists of workers in
BusyWorkers and IdleWorkers can change rapidly. If you examine these two
properties at different times, you might see the same worker on both lists if
that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a busy
or idle worker does not get updated until the job manager runs the next job and
tries to send a task to that worker.

Example Examine which workers are available to a job manager for immediate use to
perform tasks.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
get(jm, 'NumberOfIdleWorkers')

See Also Properties
BusyWorkers, MaximumNumberOfWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Array of worker objects
5-23

InputArguments
5InputArgumentsPurpose Indicate input arguments to task object

Description InputArguments is a 1-by-N cell array in which each element is an expected
input argument to the task function. You specify the input arguments when
you create a task with the createTask function.

Characteristics

Values The forms and values of the input arguments are totally dependent on the task
function.

Example Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =
 [2] [4]

See Also Functions
createTask

Properties
Function, OutputArguments

Usage Task object

Read-only While task is running or finished

Data type Cell array
5-24

JobData
5JobDataPurpose Indicate data made available to all workers for job’s tasks

Description The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it doesn’t have to be passed to the
worker for each task in a job that the worker evaluates.

Note that to access the data in a job’s JobData property, the worker session
evaluating the task needs to have access to the job. Therefore, the job object
must be passed to the task object as an input argument. See the example below.

Characteristics

Values JobData is an empty vector by default.

Example Create job1 and set its JobData property value to the contents of array1.

job1 = createJob(jm)
set(job1, 'JobData', array1)

creatTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 will be available to all the tasks in the job. Because
the job itself must be accessible to the tasks, myfunction must include a call to
the function getCurrentJob.

See Also Functions
createJob, createTask

Usage Job object

Read-only After job is submitted

Data type Any type
5-25

Jobs
5JobsPurpose Indicate jobs contained in job manager service

Description The Jobs property contains an array of all the job objects in a job manager,
whether the jobs are pending, queued, running, or finished. Job objects will be
categorized by their State property and job objects in the 'queued' state will
be displayed in the order in which they are queued, with the next job to execute
at the top (first).

Characteristics

Example Examine the Jobs property for a job manager, and use the resulting array of
objects to set property values.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j1 = createJob(jm);
j2 = createJob(jm);
j3 = createJob(jm);
j4 = createJob(jm);
.
.
.
all_jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value to 10 for
each of the job objects in the array all_jobs.

See Also Functions
createJob, destroy, findJob, submit

Properties
Tasks

Usage Job manager

Read-only Always

Data type Array of job objects
5-26

MaximumNumberOfWorkers
5MaximumNumberOfWorkersPurpose Specify maximum number of workers to perform tasks of a job

Description With MaximumNumberOfWorkers you specify the most number of workers to be
used to perform the evaluation of the job’s tasks. This property limits the
portion of the cluster used for the job.

Characteristics

Values You can set the value to anything equal to or greater than the value of the
MinimumNumberOfWorkers property.

Example Set the maximum number of workers to perform a job.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless of how
many tasks are in the job and how many workers are available on the cluster.

See Also Properties
BusyWorkers, IdleWorkers, MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

Usage Job object

Read-only After job is submitted

Data type Double
5-27

MinimumNumberOfWorkers
5MinimumNumberOfWorkersPurpose Specify minimum number of workers to perform tasks of a job

Description With MinimumNumberOfWorkers you specify at least how many workers must be
used to perform the evaluation of the job’s tasks. When the job is queued, it will
not run until this workers are simultaneously available.

Characteristics

Values The default value is 1. You can set the value anywhere from 1 up to or equal to
the value of the MaximumNumberOfWorkers property.

Example Set the minimum number of workers to perform a job.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks until
at least 6 workers are available to perform task evaluations.

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

Usage Job object

Read-only After job is submitted

Data type Double
5-28

Name
5NamePurpose Specify name for job object, or indicate name of job manager or worker object

Description The descriptive name of a job manager or worker is set when its service is
started, as described in “Customizing Engine Services” on page 2-14. This is
reflected in the Name property of the object that represents the service. You can
use the name of the job manager or worker service to find the service you want
when creating an object with the findResource function.

You configure Name as a descriptive name for a job object at any time except
when the job is queued or running.

Characteristics

Values By default, a job object is constructed with a Name created by concatenating the
Name of the job manger with _job.

Example Construct a job manager object by searching for the name of the service you
want to use.

jm = findResource('jobmanager','Name','MyJobManager');

Construct a job and note its default Name.

j = createJob(jm);
get(j, 'Name')
ans =
 MyJobManager_job

Change the job’s Name property and verify the new setting.

set(j,'Name','MyJob')
get(j,'Name')
ans =
 MyJob

Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object;
after job object is submitted

Data type String
5-29

Name
See Also Functions
findResource, createJob
5-30

NumberOfBusyWorkers
5NumberOfBusyWorkersPurpose Indicate number of workers currently running tasks

Description The NumberOfBusyWorkers property value indicates how many workers are
currently running tasks for the job manager.

Characteristics

Values The value of NumberOfBusyWorkers can range from 0 up to the total number of
workers registered with the job manager.

Example Examine the number of workers currently running tasks for a job manager.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
get(jm, 'NumberOfBusyWorkers')

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfIdleWorkers

Usage Job manager object

Read-only Always

Data type Double
5-31

NumberOfIdleWorkers
5NumberOfIdleWorkersPurpose Indicate number of workers that are idle and available to run tasks

Description The NumberOfIdleWorkers property value indicates how many workers are
currently available to the job manager for the performance of job tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job can start
running.

Characteristics

Values The value of NumberOfIdleWorkers can range from 0 up to the total number of
workers registered with the job manager.

Example Examine the number of workers available to a job manager.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
get(jm, 'NumberOfIdleWorkers')

See Also Properties
BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers

Usage Job manager object

Read-only Always

Data type Double
5-32

NumberOfOutputArguments
5NumberOfOutputArgumentsPurpose Indicate number of arguments returned by task function

Description When you create a task with the createTask function, you define how many
output arguments are expected from the task function.

Characteristics

Values A matrix is considered one argument.

Example Create a task and examine its NumberOfOutputArguments property.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t,'NumberOfOutputArguments')
ans =
 1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as the
argument immediately after the task function definition; in this case, the 1
following the @rand argument.

See Also Functions
createTask

Properties
OutputArguments

Usage Task object

Read-only While task is running

Data type Double
5-33

OutputArguments
5OutputArgumentsPurpose Data returned from execution of task

Description OutputArguments is a 1-by-N cell array in which each element corresponds to
each output argument requested from task evaluation. If the task’s
NumberOfOutputArguments property value is 0, or if the evaluation of the task
produced an error, the cell array is empty.

Characteristics

Values The forms and values of the output arguments are totally dependent on the
task function.

Example Create a job with a task and examine its result after running the job.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.

result = get(t, 'OutputArguments')

Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments')

Because each task returns a cell array, allresults is a cell array of cell arrays.

See Also Functions
createTask, getAllOutputArguments

Properties
Function, InputArguments, NumberOfOutputArguments

Usage Task object

Read-only Always

Data type Cell array
5-34

Parent
5ParentPurpose Indicate parent object of job or task

Description A job’s Parent property indicates the parent job manager object that contains
the job. A task’s Parent property indicates the parent job object that contains
the task.

Characteristics

See Also Properties
Jobs, Tasks

Usage Job object or task object

Read-only Always

Data type Job manager object or job object
5-35

PreviousJob
5PreviousJobPurpose Indicate job whose task the worker previously ran

Description PreviousJob indicates the job whose task the worker most recently evaluated.

Characteristics

Values PreviousJob is an empty vector until the worker finishes evaluating its first
task.

See Also Properties
CurrentJob, CurrentTask, PreviousTask, Worker

Usage Worker object

Read-only Always

Data type Job object
5-36

PreviousTask
5PreviousTaskPurpose Indicate task that worker previously ran

Description PreviousTask indicates the task that the worker most recently evaluated.

Characteristics

Values PreviousTask is an empty vector until the worker finishes evaluating its first
task.

See Also Properties
CurrentJob, CurrentTask, PreviousJob, Worker

Usage Worker object

Read-only Always

Data type Task object
5-37

QueuedFcn
5QueuedFcnPurpose Specify M-file function to execute when job is submitted to job manager queue

Description QueuedFcn specifies the M-file function to execute when a job is submitted to a
job manager queue.

The callback will be executed in the local MATLAB session, that is, the session
that sets the property.

Characteristics

Values QueuedFcn can be set to any valid MATLAB callback value.

Example Create a job and set its QueuedFcn property, using a function handle to an
anonymous function that sends information to the display.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm, 'Name', 'Job_52a');
set(j, 'QueuedFcn', ...
 @(job,eventdata) disp([job.Name ' now queued for execution.']))
.
.
.
submit(j)
Job_52a now queued for execution.

See Also Functions
submit

Properties
FinishedFcn, RunningFcn

Usage Job object

Read-only Never

Data type Callback
5-38

RestartWorker
5RestartWorkerPurpose Specify whether to restart MATLAB workers before evaluating tasks in job

Description In some cases, you might want to restart MATLAB on the workers before they
evaluate any tasks in a job. This action resets defaults, clears the workspace,
and so on.

Characteristics

Values Set RestartWorker to true (or logical 1) if you want the job to restart the
MATLAB session on any workers before they evaluate their first task for that
job. The workers are not reset between tasks of the same job. Set
RestartWorker to false (or logical 0) if you do not want MATLAB restarted on
any workers. When you perform get on the property, the value returned is
logical 1 or logical 0. The default value is 0, which does not restart the workers.

Example Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
set(j, 'RestartWorker', true)
.
.
.
submit(j)

See Also Functions
submit

Usage Job object

Read-only After job is submitted

Data type Logical
5-39

RunningFcn
5RunningFcnPurpose Specify M-file function to execute when job or task starts running

Description The callback will be executed in the local MATLAB session, that is, the session
that sets the property.

Characteristics

Values RunningFcn can be set to any valid MATLAB callback value.

Example Create a job and set its QueuedFcn property, using a function handle to an
anonymous function that sends information to the display.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn', ...
 @(job,eventdata) disp([job.Name ' now running.']))
.
.
.
submit(j)
Job_52a now running.

See Also Functions
submit

Properties
FinishedFcn, QueuedFcn

Usage Task object or job object

Read-only Never

Data type Callback
5-40

StartTime
5StartTimePurpose Indicate when job or task started running

Description StartTime holds a date number specifying the time when a job or task starts
running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values StartTime is assigned the job manager’s system time when the task or job has
started running.

Example Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('jobmanager', 'Name',' MyJobManager');
j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j, 'finished')
get(j, 'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

See Also Functions
submit

Properties
CreateTime, FinishTime, SubmitTime

Usage Job object or task object

Read-only Always

Data type String
5-41

State
5StatePurpose Indicate current state of task object, job object, job manager, or worker

Description The State property reflects the stage of an object in its life cycle, indicating
primarily whether or not it has yet been executed. The possible State values
for all Distributed Computing Toolbox objects are discussed below in the
“Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be part of a
job that is running if other tasks in the job have not finished.

Characteristics

Values Task Object
For a task object, possible values for State are

• pending — Tasks that have not yet started to evaluate the task object’s
Function property are in the pending state.

• running — Task objects that are currently in the process of evaluating the
Function property are in the running state.

• finished — Task objects that have finished evaluating the task object’s
Function property are in the finished state.

• unavailable — Communication cannot be established with the job manager.

Job Object
For a job object, possible values for State are

• pending — Job objects that have not yet been submitted to a job queue are
in the pending state.

• queued — Job objects that have been submitted to a job queue but have not
yet started to run are in the queued state.

Usage Task, job, job manager, or worker object

Read-only Always

Data type String
5-42

State
• running — Job objects that are currently in the process of running are in the
running state.

• finished — Job objects that have completed running all their tasks are in
the finished state.

• unavailable — Communication cannot be established with the job manager.

Job Manager
For a job manager, possible values for State are

• running — A started job queue will execute jobs normally.

• paused — The job queue is paused.

• unavailable — Communication cannot be established with the job manager.

When a job manager first starts up, the default value for State is running.

Worker
For a worker, possible values for State are

• running — A started job queue will execute jobs normally.

• unavailable — Communication cannot be established with the worker.

Example Create a job manager object representing a job manager service, and create a
job object; then examine each object’s State property.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
get(jm, 'State')
ans =
 running
j = createJob(jm);
get(j, 'State')
ans =
 pending

See Also Functions
createJob, createTask, findResource, pause, resume, submit
5-43

SubmitTime
5SubmitTimePurpose Indicate when job was submitted to job queue

Description SubmitTime holds a date number specifying the time when a job was submitted
to the job queue, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics

Values SubmitTime is assigned the job manager’s system time when the job is
submitted.

Example Create and submit a job, then get its SubmitTime.

jm = findResource('jobmanager', 'Name',' MyJobManager');
j = createJob(jm);
createTask(j, @rand, 1, {12,12});
submit(j)
get(j, 'SubmitTime')
ans =
Wed Jun 30 11:33:21 EDT 2004

See Also Functions
submit

Properties
CreateTime, FinishTime, StartTime

Usage Job object

Read-only Always

Data type String
5-44

Tag
5TagPurpose Specify label to associate with job object

Description You configure Tag to be a string value that uniquely identifies a job object.

Tag is particularly useful in programs that would otherwise need to define the
job object as a global variable, or pass the object as an argument between
callback routines.

You can return the job object with the findJob function by specifying the Tag
property value.

Characteristics

Values The default value is an empty string.

Example Suppose you create a job object in the job manager jm.

job1 = createJob(jm);

You can assign job1 a unique label using Tag.

set(job1,'Tag','MyFirstJob')

You can identify and access job1 using the findJob function and the Tag
property value.

job_one = findJob(jm,'Tag','MyFirstJob');

See Also Functions
findJob

Usage Job object

Read-only Never

Data type String
5-45

Tasks
5TasksPurpose Indicate tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job, whether
the tasks are pending, running, or finished. Tasks are always returned in the
order in which they were created.

Characteristics

Example Examine the Tasks property for a job object, and use the resulting array of
objects to set property values.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
createTask(j, ...)
.
.
.
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =
 distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for each task
in the job.

See Also Functions
createTask, destroy, findTask

Properties
Jobs

Usage Job object

Read-only Always

Data type Array of task objects
5-46

Timeout
5TimeoutPurpose Specify time limit for completion of task or job

Description Timeout holds a double value specifying the number of seconds to wait before
giving up on a task or job.

The time for timeout begins counting when the task State property value
changes from the Pending to Running, or when the job object State property
value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the task were
stopped with the cancel function, except a different message is placed in the
task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job were
stopped using the cancel function, except all pending and running tasks are
treated as having timed out.

Characteristics

Values The default value for Timeout is large enough so that in practice, tasks and jobs
will never time out. You should set the value of Timeout to the practical limit
of time you want to allow for evaluation of tasks and jobs.

Example Set a job’s Timeout value to 1 minute.

jm = findResource('jobmanager', 'Name', 'MyJobManager');
j = createJob(jm);
set(j, 'Timeout', 60)

See Also Functions
submit

Properties
ErrorMessage, State

Usage Task object or job object

Read-only While running

Data type Double
5-47

UserData
5UserDataPurpose Specify data to associate with job or task object

Description You configure UserData to store data that you want to associate with an object.
The object does not use this data directly, but you can access it using the get
function or dot notation.

UserData is stored locally, not in a remote session. If you close the client session
where UserData is set for an object, then later access the same object from
another client by getting it from the job manager, the original UserData is not
recovered. Likewise, commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data in the
UserData property.

Characteristics

Values The default value is an empty vector.

Example Suppose you create the job object job1.

job1 = createJob(jm);

You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff
get(job1,'UserData')
ans =
 a: 1
 b: -1.2500

Usage Job object or task object

Read-only Never

Data type Any type
5-48

UserName
5UserNamePurpose Indicate user who created job

Description The UserName property value is a string indicating the login name of the user
who created the job.

Characteristics

Example Examine a job to see who created it.

get(job1, 'UserName')
ans =
jsmith

Usage Job object

Read-only Always

Data type String
5-49

Worker
5WorkerPurpose Indicate worker session that performed task

Description The Worker property value is an object representing the worker session that
evaluated the task.

Characteristics

Values Before a task is evaluated, its Worker property value is an empty vector.

Example Find out which worker evaluated a particular task.

submit(job1)
waitForState(job1,'finished')
t1 = findTask(job1,'ID',1)
t1.Worker.Name
ans =
node55_worker1

See Also Properties
Tasks

Usage Task object

Read-only Always

Data type Worker object
5-50

Index
B
BusyWorkers property 5-7

C
cancel function 4-6
CaptureCommandWindowOutput property 5-8
clear function 4-8
client

definition 1-4
CommandWindowOutput property 5-9
createJob function 4-9
createTask function 4-11
CreateTime property 5-10
CurrentJob property 5-11
CurrentTask property 5-12

D
dctconfig function 4-13
demote function 4-14
destroy function 4-15
dfeval function 4-16
dfevalasync function 4-19

E
ErrorIdentifier property 5-13
ErrorMessage property 5-14

F
FileDependencies property 5-15
files

sharing 3-14
findJob function 4-20
findResource function 4-22
findTask function 4-24
FinishedFcn property 5-17
FinishTime property 5-18
Function property 5-19
functions

cancel 4-6
clear 4-8
createJob 4-9
createTask 4-11
dctconfig 4-13
demote 4-14
destroy 4-15
dfeval 4-16
dfevalasync 4-19
findJob 4-20
findResource 4-22
findTask 4-24
get 4-26
getAllOutputArguments 4-28
getCurrentJob 4-30
getCurrentJobmanager 4-31
getCurrentTask 4-32
getCurrentWorker 4-33
help 4-34
inspect 4-35
jobStartup 4-36
length 4-37
methods 4-38
pause 4-39
promote 4-40
resume 4-41
set 4-42
size 4-44
submit 4-45
Index-1

Index

Ind
functions (continued)
taskFinish 4-46
taskStartup 4-47
waitForState 4-48

G
get function 4-26
getAllOutputArguments function 4-28
getCurrentJob function 4-30
getCurrentJobmanager function 4-31
getCurrentTask function 4-32
getCurrentWorker function 4-33

H
help

command-line 1-10
help function 4-34
HostAddress property 5-20
HostName property 5-21

I
ID property 5-22
IdleWorkers property 5-23
InputArguments property 5-24
inspect function 4-35

J
job

creating
example 3-10

definition 1-4
life cycle 3-3
submitting to queue 3-12
ex-2
job manager
definition 1-4
finding

example 3-9
logs 2-19
multiple on one machine 2-17
starting

on UNIX or Macintosh 2-5
on Windows 2-11

stopping
on UNIX or Macintosh 2-7
on Windows 2-12

JobData property 5-25
Jobs property 5-26
jobStartup function 4-36

L
length function 4-37

M
MaximumNumberOfWorkers property 5-27
methods function 4-38
MinimumNumberOfWorkers property 5-28

N
Name property 5-29
NumberOfBusyWorkers property 5-31
NumberOfIdleWorkers property 5-32
NumberOfOutputArguments property 5-33

O
objects 1-7
OutputArguments property 5-34

Index
P
Parent property 5-35
pause function 4-39
platforms

supported 1-6
PreviousJob property 5-36
PreviousTask property 5-37
programming

basic session 3-9
guidelines 3-2
tips 3-20

promote function 4-40
properties

BusyWorkers 5-7
CaptureCommandWindowOutput 5-8
CommandWindowOutput 5-9
CreateTime 5-10
CurrentJob 5-11
CurrentTask 5-12
ErrorIdentifier 5-13
ErrorMessage 5-14
FileDependencies 5-15
FinishedFcn 5-17
FinishTime 5-18
Function 5-19
HostAddress 5-20
HostName 5-21
ID 5-22
IdleWorkers 5-23
InputArguments 5-24
JobData 5-25
Jobs 5-26
MaximumNumberOfWorkers 5-27
MinimumNumberOfWorkers 5-28
Name 5-29

properties (continued)
NumberOfBusyWorkers 5-31
NumberOfIdleWorkers 5-32
NumberOfOutputArguments 5-33
OutputArguments 5-34
Parent 5-35
PreviousJob 5-36
PreviousTask 5-37
QueuedFcn 5-38
RestartWorker 5-39
RunningFcn 5-40
StartTime 5-41
State 5-42
SubmitTime 5-44
Tag 5-45
Tasks 5-46
Timeout 5-47
UserData 5-48
UserName 5-49
Worker 5-50

Q
QueuedFcn property 5-38

R
RestartWorker property 5-39
results

retrieving 3-12
resume function 4-41
RunningFcn property 5-40
Index-3

Index

Ind
S
set function 4-42
size function 4-44
StartTime property 5-41
State property 5-42
submit function 4-45
SubmitTime property 5-44

T
Tag property 5-45
task

creating
example 3-11

definition 1-4
taskFinish function 4-46
Tasks property 5-46
taskStartup function 4-47
Timeout property 5-47
ex-4
U
UserData property 5-48
UserName property 5-49

W
waitForState function 4-48
Worker property 5-50
workers

definition 1-4
logs 2-19
starting

on UNIX or Macintosh 2-6
on Windows 2-11

stopping
on UNIX or Macintosh 2-7
on Windows 2-12

	Getting Started
	What Are the Distributed Computing Products?
	Toolbox and Engine Components
	Job Managers, Workers, and Clients
	Components on Mixed Platforms
	The MATLAB Distributed Computing Engine Daemon
	Components Represented in the Client

	Using the Distributed Computing Toolbox
	Overview
	Example: Programming a Basic Job
	Example: Evaluating a Basic Function

	Getting Help
	Command-Line Help
	Help Browser

	Network Administration
	Preparing for Distributed Computing
	Before You Start
	Planning Your Network Layout
	Network Requirements

	UNIX and Macintosh System Administration
	Before You Start
	Configuring the MDCE Daemon
	Starting Job Managers
	Starting Workers
	Stopping Job Managers and Workers
	Stopping and Uninstalling the MDCE Daemon

	Windows System Administration
	Before You Start
	Configuring the MDCE Service
	Starting Job Managers
	Starting Workers
	Stopping Job Managers and Workers
	Stopping and Uninstalling the MDCE Service

	Customizing Engine Services
	Overriding the Script Defaults
	Defining the Script Defaults

	Accessing Service Record Files
	Locating Log Files
	Locating Checkpoint Directories

	Controlling MDCE Sessions from a Script
	Starting MDCE Sessions
	Stopping MDCE Sessions
	Running Sessions for a Specified Time

	Programming a Distributed Application
	Program Development Guidelines
	Life Cycle of a Job
	Evaluating Functions in a Cluster
	Evaluating Functions Synchronously
	Evaluating Functions Asynchronously

	Creating and Running Jobs
	Find a Job Manager
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job’s Results

	Sharing Data
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects in the Job Manager
	What Happens When the Client Session Ends?
	Recovering Objects
	Permanently Removing Objects

	Programming Tips
	Saving Objects
	Running Tasks That Call Simulink
	Using the pause Function
	Transmitting Large Amounts of Data
	Data Size Limit on Object Properties
	Interrupting a Job

	Function Reference
	Functions — Categorical List
	General Functions
	Job Manager Functions
	Job Functions
	Task Functions

	Functions — Alphabetical List
	cancel
	clear
	createJob
	createTask
	dctconfig
	demote
	destroy
	dfeval
	dfevalasync
	findJob
	findResource
	findTask
	get
	getAllOutputArguments
	getCurrentJob
	getCurrentJobmanager
	getCurrentTask
	getCurrentWorker
	help
	inspect
	jobStartup
	length
	methods
	pause
	promote
	resume
	set
	size
	submit
	taskFinish
	taskStartup
	waitForState

	Property Reference
	Properties — Categorical List
	Job Manager Properties
	Job Properties
	Task Properties
	Worker Properties

	Properties — Alphabetical List
	BusyWorkers
	CaptureCommandWindowOutput
	CommandWindowOutput
	CreateTime
	CurrentJob
	CurrentTask
	ErrorIdentifier
	ErrorMessage
	FileDependencies
	FinishedFcn
	FinishTime
	Function
	HostAddress
	HostName
	ID
	IdleWorkers
	InputArguments
	JobData
	Jobs
	MaximumNumberOfWorkers
	MinimumNumberOfWorkers
	Name
	NumberOfBusyWorkers
	NumberOfIdleWorkers
	NumberOfOutputArguments
	OutputArguments
	Parent
	PreviousJob
	PreviousTask
	QueuedFcn
	RestartWorker
	RunningFcn
	StartTime
	State
	SubmitTime
	Tag
	Tasks
	Timeout
	UserData
	UserName
	Worker

	Index

